

HANDBOOK

eGrabber

Gigelink Handbook

4400 eGrabber Gigelink 4400-EV eGrabber Gigelink 30-day evaluation license

This documentation is provided with **eGrabber 24.03.2** (doc build **2186**). **www.euresys.com**

This documentation is subject to the General Terms and Conditions stated on the website of **EURESYS S.A.** and available on the webpage https://www.euresys.com/en/Menu-Legal/Terms-conditions. The article 10 (Limitations of Liability and Disclaimers) and article 12 (Intellectual Property Rights) are more specifically applicable.

Contents

PART I : GETTING STARTED	6
1. Introduction	7
2. Installation	8
2.1. Overview	
2.2. Purchase a Gigelink License Key	
2.3. Driver Installation Procedure	
2.4. Activate from the User Interface	
3. Configuration	
3.1. Configure the Network Interface Card	
3.2. Configure the Firewall	
3.3. Configure the Camera Network Settings	
5.4. Comigure the Camera Genaph Features	
PART II : GENAPI FEATURES	34
1. Gigelink System Module Register Description	35
1.1. Root Category	
SystemInformation	
InterfaceEnumeration	
1.2. SystemInformation Category	
TLVendorName	
TLModelName	
TLID	
TLVersion	
TLPath	
TLType	
GenTLVersionMajor GenTLVersionMinor	
LicenseStatus	
1.3. InterfaceEnumeration Category	
InterfaceUpdateList	
InterfaceSelector	
InterfaceID	
2. Gigelink Interface Module Register Description	
2.1. Root Category	
InterfaceInformation	
DeviceEnumeration	
2.2. InterfaceInformation Category	
InterfaceID	
InterfaceType	
IPAddress	60
SubnetMask	61
AllowBroadcastAck	
2.3. DeviceEnumeration Category	63
DeviceUpdateList	
DeviceSelector	
DeviceID	
DeviceVendorName	
DeviceModelName	
DeviceAccessStatus DeviceCurrentlPAddress	
DeviceCurrentSubnetMask	

eGrabber Gigelink Handbook

	DeviceCurrentDefaultGateway	72	2
	DeviceUserDefinedName	73	3
	DeviceSerialNumber	74	4
	DeviceVersion	75	5
	DeviceForceIP		
	DeviceForceIPAddress	77	7
	DeviceForceSubnetMask	78	3
	DeviceForceDefaultGateway	79	9
3 (Gigelink Device Module Register Description	80)
	3.1. Root Category		
`	DeviceInformation		
	StreamEnumeration		
	GigEVision		
	3.2. DeviceInformation Category		
	DeviceID		
	DeviceVendorName		
	DeviceModelName		
	DeviceAccessStatus		
	DeviceType		
	DeviceDescription		
	3.3. StreamEnumeration Category		
	StreamSelector		
	StreamID		
	3.4. GigEVision Category		
	DeviceLinkHeartbeatTimeout		
	ActionDeviceKey		
	ActionGroupKey		
	ActionGroupMask		
	ExecuteAction	. 100)
4. (Gigelink Data Stream Module Register Description	101	L
4	I.1. Root Category	.102	2
	StreamInformation		
	ImageFormatControl		
	TransportLayerControl		
	BufferHandlingControl		
	StreamControl		
	GigEVision		
	EventControl		
	StreamStatistics		
4	1.2. StreamInformation Category	.111	L
	StreamID		
	StreamType		
	StreamDescription		
	StreamConfigurationStatus		
_	I.3. ImageFormatControl Category		
	PixelFormat		
	PixelFormatNamespace		
	PixelSize		
	PixelComponentCount		
	Width		
	Height		
	ImageFormatSource		
	RemotePixelFormat		
	RemoteWidth		
	RemoteHeight		
4	· ·		
4	I.4. TransportLayerControl Category PayloadSize	.145	5

eGrabber Gigelink Handbook

ControlRemoteDevice	147
4.5. BufferHandlingControl Category	148
StreamAnnouncedBufferCount	149
StreamBufferHandlingMode	150
StreamAnnounceBufferMinimum	151
StreamAcquisitionModeSelector	152
BufferAllocationAlignmentControl	153
BufferAllocationAlignment	154
BufferInfoSource	155
BufferInfoWidth	156
BufferInfoHeight	157
BufferInfoPixelFormat	158
BufferHeight	168
DeliverIncompleteImages	169
4.6. GigEVision Category	170
GevPacketResend	171
SetPacketSizeToMaximum	172
FilterDriverEnable	173
4.7. StreamControl Category	174
StreamReset	175
ActivateCic	176
DeactivateCic	177
4.8. EventControl Category	178
EventSelector	179
EventNotification	180
EventNotificationContext1	181
EventNotificationContext2	182
EventNotificationContext3	183
EventCount	184
EventCountReset	185
4.9. StreamStatistics Category	186
StatisticsSamplingSelector	187
StatisticsFrameRate	188
StatisticsLineRate	189
StatisticsDataRate	190
StatisticsStartSampling	191
StatisticsStopSampling	192

PART I GETTING STARTED

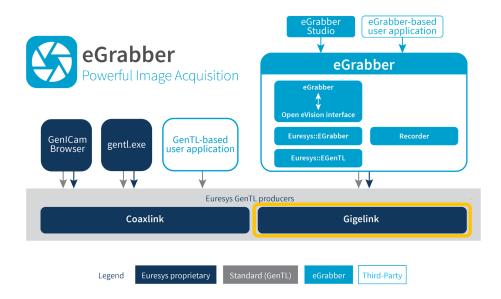
1. Introduction

About this guide

This manual guides you through the standard preparation, installation and configuration so that you can connect to and set up a GigE Vision camera using the **Gigelink** library. You will mainly use **eGrabber Studio** for the initial connection and configuration.

This manual might refer to other documentation sources available in the eGrabber online documentation.

About eGrabber Gigelink


eGrabber Gigelink is a licensed library delivered with the **eGrabber** package. It provides a hardware-independent access to GigE Vision cameras.

With **eGrabber Gigelink**, programmers can use the **eGrabber** concepts, objects, and function calls to acquire images from GigE Vision cameras, in the same way as with CoaXPress cameras and the Coaxlink cards.

eGrabber Gigelink consists in the following software components:

- eGrabber Gigelink GenTL producer (gigelink.cti)
- GenApi implementation for Gigelink
- Optional filter driver to improve performances (by reducing the CPU load)

eGrabber Gigelink is compatible with GenICam and the eGrabber Studio application.

2. Installation

2.1. Overview

The installation consists of the following steps:

Preliminary steps

Select the Network Interface Card

Picture quality with GigE Vision highly depends on optional features of Ethernet adapters such as Jumbo Frame packets and high amount of on-board buffers. Contact the Euresys Sales teams should you need advice on the network interface cards providing the required features and resources.

"Purchase a Gigelink License Key" on page 9

Installation steps

1. Install the eGrabber driver package

The package includes all **eGrabber Gigelink** software components.

Refer to "Driver Installation Procedure" on page 10

2. Activate the **Gigelink** license

This guide describes how to activate an **eGrabber Gigelink** license using the **Neo License Manager** application.

The **Neo License Manager** application is included in the **eGrabber** package and is available from the Windows Start menu.

Refer to "Activate from the User Interface" on page 11

NOTE

Besides using the **Neo License Manager** user interface, you can also activate the **eGrabber Gigelink** license using the **Neo License Manager** command line (online or offline). Refer to the documentation on **Neo Licensing System** for more information about these activation methods.

2.2. Purchase a Gigelink License Key

Overview

To be able to use **eGrabber Gigelink**, you need to buy a **eGrabber Gigelink** license from **Euresys** or one of its distributors.

When you buy a license, you receive a **Ticket ID** corresponding to the license.

You will then use this **Ticket ID** to activate your license.

You can activate your license in one of the following ways:

- on the computer, as a software license
- on a Neo USB Dongle that you can buy from Euresys.

See also: For more information, refer to the user guide D214-Neo Licensing System available in https://documentation.euresys.com/Products/COAXLINK/COAXLINK/en-us/Content/00_ Home/PDF_Guides.htm

Advantages and disadvantages of software license vs. dongle license

Software license - advantages

 You spare the use of an additional USB port on the computer, compared to the dongle license.

Software license - disadvantages

- If the computer fails, the eGrabber Gigelink license is lost with the computer.
- If you accidentally authenticate to a different computer, you are not allowed to reauthenticate.

Dongle license - advantages

If you need to change the computer, you can easily transfer the eGrabber Gigelink license as
this is stored on your USB dongle.

Dongle license - disadvantages

- The USB dongle must always be plugged into the computer.
- You have to buy the USB dongle in addition to the eGrabber Gigelink license key.

TIP

We recommend to use a **Neo USB Dongle** for a more secure and an easily portable license storage solution.

2.3. Driver Installation Procedure

WARNING

Prior to executing this procedure, read the Important Notices section of the **eGrabber** release notes.

1. Open the support page of the Euresys website: https://www.euresys.com/support/ and click on the *Coaxlink series* icon to open the Coaxlink download area.

NOTE: The Euresys website download area may require user authentication. The user ID and password are not obtained, they are chosen by the user. Access is free and unrestricted.

- 2. Click on *eGrabber for Coaxlink and Grablink Duo* to display the file list corresponding to the latest available **eGrabber** release.
- 3. In the Setup Files section, select the file corresponding to your operating system and your processor architecture:

egrabber-<OS>-<ARCH>(-<TYPE>)-<MA.MI.RE.BU>.<EXT> with

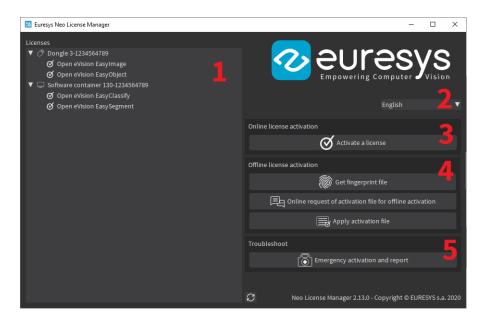
- <OS> = {linux, macos, win7, win10} operating system
- <ARCH> = {aarch64, x86_64} processor architecture
- <TYPE> = {kext, dext} driver type (for macOS only)
- <MA.MI.RE.BU> major version, minor version, revision and build numbers of the driver package
- <EXT> = {exe, tar.gz, pkg} file type

See also: Supported Operating Systems topic in the Release Specification section of the **eGrabber** release notes.

NOTE

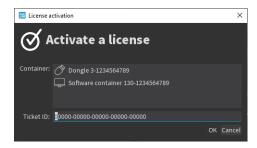
- For an installation on Windows 7 or 8.1, use the egrabber-win7-x86_64 <ma.MI.RE.BU>.exe setup file.
- For an installation on Windows 10 or 11, use the egrabber-win10-x86_64 MA.MI.RE.BU>.exe setup file.
- 4. Launch the installer tool to install the driver files and software tools on your PC.

NOTE: If you have an existing **eGrabber driver** (or a **Coaxlink driver**) already installed, the installer tool prompts you to uninstall it before being able to continue. Otherwise, it prompts you for the selection of the destination folder.



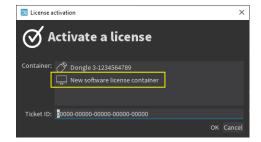
2.4. Activate from the User Interface

The Neo License Manager user interface


The **Neo License Manager** is organized in 5 zones:

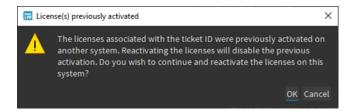
- 1. A list of the license containers and the licenses they contain.
- 2. The interface language configuration.
- 3. The online **Neo License** activation.
- 4. The offline Neo License activation.
- 5. The troubleshooting.

Activate an online license


1. Click on the Activate a license button to open the License activation dialog.

- 2. Enter the required information:
 - The container on which you want to activate the license.
 - ☐ The **Ticket ID** (5 groups of 5 alphanumeric characters separated by a dash).

If there is no software license container yet, the dialog proposes you to create a new one.


System reinstallation

If you have to reinstall the system and lost your licenses:

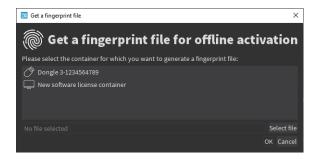
 Activate the license with the old Ticket ID to try to recover all the licenses associated to the container where you first activated this Ticket ID.

This only works if:

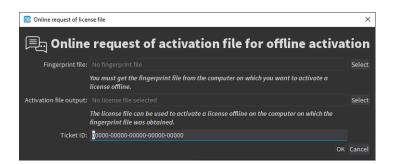
- It is done in a new, empty container.
- ☐ The system is recognizable (the hardware is more or less the same).
- 2. If this does not work or if you lost your licenses and the system has changed significantly (for instance after the failure and replacement of a hardware component), you need to request a reactivation:
 - Contact the support to obtain a reactivation authorization for the corresponding Ticket ID.
 - Once the reactivation is authorized, perform the license activation procedure as usual.
 - ☐ The **Neo License Manager** asks for the confirmation of the reactivation.

NOTE

The reactivation disables the previous activation on the other system.



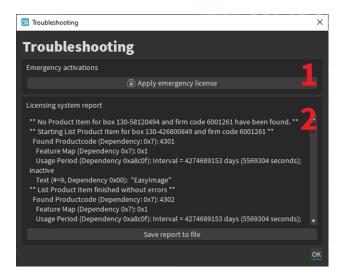
Activate an offline license


The offline license activation allows you to activate licenses on a *machine A* that is not connected to the Internet through a *machine B* that is connected to the Internet.

The offline license activation is a 3 steps procedure:

- 1. On *machine A*:
 - a. Click on the Get fingerprint file button to open the Get a fingerprint file dialog.

- b. Enter the required information::
- The license container on which you want to activate the license.
- The path to save the fingerprint file.
- 2. On machine B:
 - a. Click on the Online request of license file for offline activation button to request the corresponding license file.



- b. Enter the required information:
- The Fingerprint file from machine A.
- The License file output path to save the license file.
- ☐ The **Ticket ID** (5 groups of 5 alphanumeric characters separated by a dash) for the license.
- 3. On machine A:
 - a. Click on the Apply license file button.
 - **b.** Select the license file generated in step 2.

Troubleshooting

1. Click on the Emergency activation and report button to open the Troubleshooting dialog.

- 2. Click on the Apply emergency license button to temporarily activate licenses:
 - □ These licenses activate all **Euresys** products.
 - They are valid for 8 days.
 - You can repeat this a maximum of 3 times.
 - For security reasons, you cannot activate emergency licenses on virtual machines.
- 3. Click on the Save report to file button to generate a licensing system report and save it to a file.
 - ☐ The support team may require this report when you have a licensing issue.

3. Configuration

3.1. Configure the Network Interface Card

Overview

This section describes how to configure the network interface card (NIC) in MS Windows once the network card is installed.

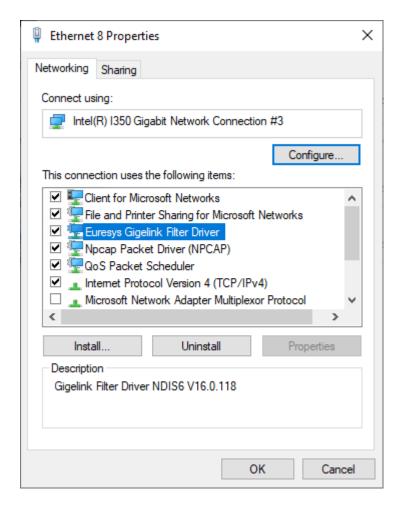
The configuration includes the following steps:

- 1. "Access the network interface card settings" on page 15
- 2. "Check the filter driver" on page 16
- 3. "Set the IP address of the network interface card" on page 17
- 4. "Enable the Jumbo Packet settings" on page 20
- 5. "Set the Receive Buffer settings" on page 21
- 6. "Set Interrupt Moderation Settings" on page 22

Access the network interface card settings

To access the Network Interface Card settings:

- 1. Open the Ethernet settings from the Windows Start menu
- Select Change adapter options to access the list of network connections in Control Panel\Network and Internet\Network Connections.
- 3. Right-click the network interface card you want to configure and select Properties from the contextual menu.

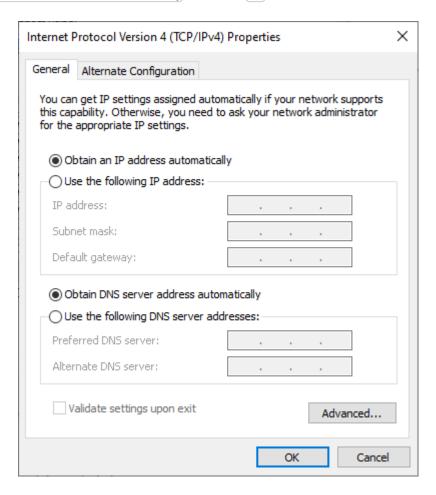

The Properties dialog box of your Network Interface Card opens.

Check the filter driver

When the **eGrabber** driver is installed, the filter driver is enabled by default. In an operational environment, we recommend to keep the filter driver enabled. Check that the filter driver is enabled in your NIC properties, as shown on the screenshot below.

The filter driver operates directly with the NIC driver to intercept and handle the stream packets. It then sends these priority stream data directly to the application buffer, bypassing the system network IP stack.

For test purposes, you can disable the filter driver in the NIC properties.



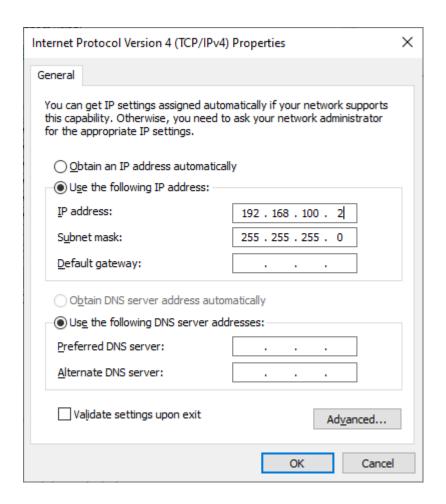
Set the IP address of the network interface card

In the Properties dialog box, select Internet Protocol Version 4 (TCP/IPv4) and click Properties.

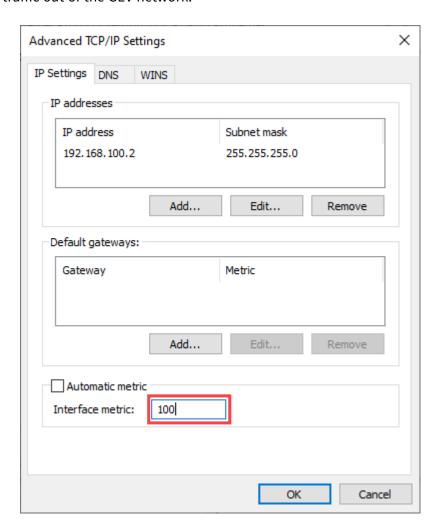
With DHCP Server

Select Obtain an IP address automatically and click OK to validate.

Without DHCP server

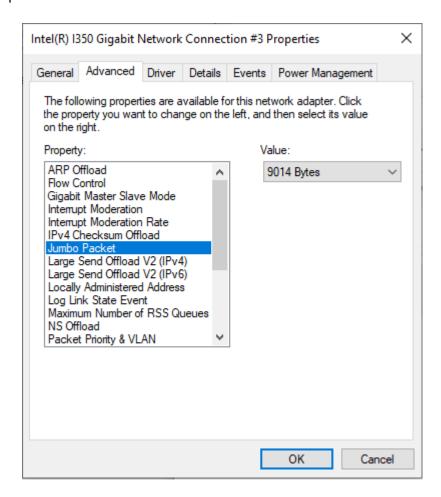

- 1. Select Use the following IP address and define the IP address settings, for example as follows:
 - □ IP address: 192.168.XXX.2, with XXX in the range [0-255].
 - □ Subnet mask: 255.255.255.0.
 - Default gateway remains empty.

WARNING


If you use a multi-port NIC to connect to multiple cameras point-to-point, each point-to-point wire is considered as a separate LAN, you should define fixed NIC addresses and subnets for each port so that they do not collide, for example 192.168.100.2, 192.168.101.2, 192.168.102.2, etc.

2. Click Advanced and set the metric to 100¹ in the IP Settings tab, if it is relevant to help keep unrelated traffic out of the GEV network:

3. Click OK twice to validate and come back to the Properties dialog box.


¹ This value is provided for reference.

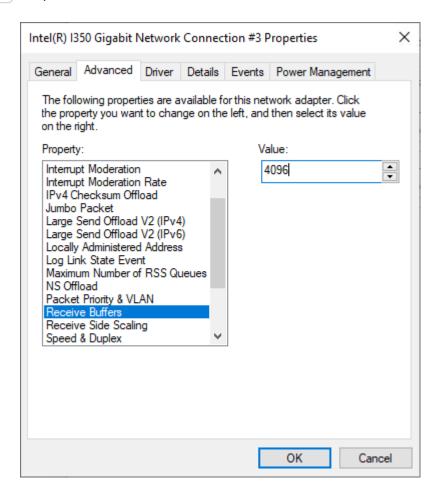
Enable the Jumbo Packet settings

Enable the Jumbo Packet settings allows you to transfer and receive larger streaming packets and reduce processing overhead.

- In the Properties dialog box, click Configure.
- 2. In the dialog box, select the Advanced tab, select the Jumbo Packet in the Property list.
- 3. In the Value field, select the value 9014 Bytes as the maximum transmission unit (MTU) for the jumbo packets:

4. Set the next advanced parameter described below.

NOTE


Make sure that you enable the jumbo packets on the camera side (see "Set packet size to maximum" on page 28), and that other possible devices in the network between the camera and the host computer have jumbo frames enabled with the same MTU.

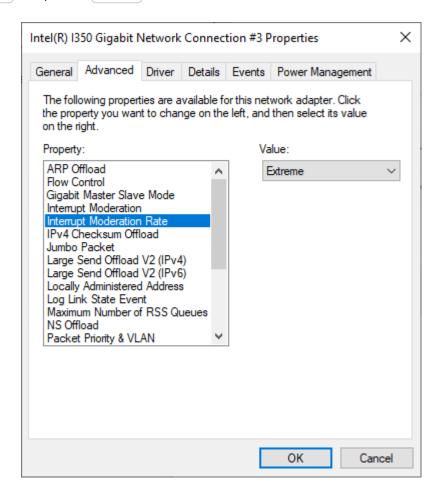
Set the Receive Buffer settings

The Receive Buffers setting allows you to define how much system memory is dedicated to store received packets. Increasing the buffers helps improve the reliability of the network traffic, but consumes system memory.

- 1. In the same Advanced tab where you have set the jumbo packets, select the Receive Buffers in the Property list.
- 2. In the Value field, select the value 4096 for receive buffers:

3. Set the next advanced parameter described below.

¹ This value is provided for reference.



Set Interrupt Moderation Settings

The Interrupt Moderation settings allow you to define how often the adapter interrupts the system to handle the incoming (and outgoing) packets.

With GigE Vision cameras, it is more appropriate to set the highest level for interrupt moderation rate. This means that the NIC does not interrupt the processes, which reduces the CPU utilization. Instead the NIC driver actively decides when to check and handle the received packets.

- 1. In the same Advanced tab where you have set the receive buffers, select Interrupt Moderation in the Property list and check that the setting is enabled.
- 2. Select Interrupt Moderation Rate in the Property list.
- 3. In the Value field, select Extreme.

4. Click OK to validate all settings you have defined and come back to the panel displaying the network connections.

3.2. Configure the Firewall

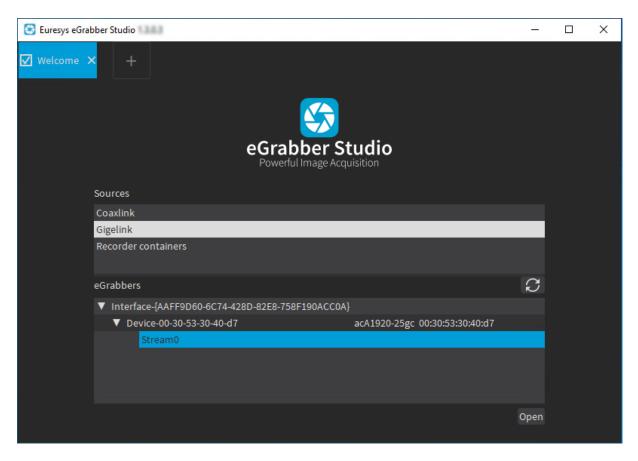
Most **GigE Vision** cameras support Firewall Traversal technique that allows seamless interoperation through typical host firewalls such as **Windows Defender** firewall.

Older models, however, may lack this feature and require that the applications using **eGrabber Gigelink** (as well as **eGrabber Studio**) are explicitly added as "allowed apps" in the firewall.

In a standard installation, the applications to authorize are in c:\program files\euresys\egrabber\bin and c:\program files\euresys\egrabber\studio.

3.3. Configure the Camera Network Settings

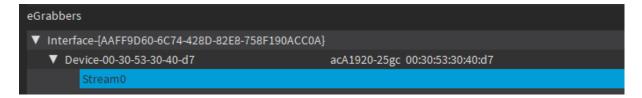
Overview


Follow the steps detailed below to configure the camera network settings. You can perform all steps in **eGrabber Studio**.

- 1. "Select the GigE Vision camera in eGrabber Studio" on page 24
- 2. "Configure the camera IP settings" on page 25 (if not defined yet)
- 3. "Set packet size to maximum" on page 28
- 4. "Set Packet Delay" on page 28 (if necessary)

Select the GigE Vision camera in eGrabber Studio

- 1. Open **Studio** from the Windows Start menu.
- 2. In the Sources area, select Gigelink:



- 3. In the eGrabbers area, do one of the following actions. See "Information on Gigelink sources "on page 25 about displayed information.
 - If the desired interface, device and stream are displayed, double-click the Gigelink stream:
 - The stream opens directly in a new tab. Go directly to the section "Set packet size to maximum" on page 28.
 - ☐ If only the desired interface is displayed, the camera is not connected. Thus double-click the **Gigelink** interface. The interface opens in a new tab. Go to the next section.

Information on Gigelink sources

In the Welcome window, the following information related to the interface (and device) are displayed for each **Gigelink** source:

Source type	Levels	Displayed information (from left to right)
	1 - Interface	 Name of the Gigelink interface (based on the UID of the network interface connected to the Gigelink device)
Gigelink	2 - Device	 Name of the Gigelink device Model of the remote device MAC address of the remote device
	3 - Stream	Name of the Gigelink stream

Configure the camera IP settings

You can configure the camera IP settings using a dedicated script or eGrabber Studio.

Configure the camera IP settings using a script

NOTE

You can use this script for any change in the IP configuration of the camera.

- 1. Locate and open the script GigE Vision camera IP configuration in one of the following ways:
 - Use the search field in the Windows Start menu.
 - Use a command line interface if you know the script location. The default location is:
 C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Euresys eGrabber

The script opens and lists the network interfaces and the GigE Vision cameras attached to them:


```
GigE Vision camera IP configuration - "C:\Program Files\Euresys\eGrab... — X

GigE Vision camera IP configuration

Interface-{AAFF9D60-6C74-428D-82E8-758F190ACC0A}
IP address: 10.0.44.30
Subnet mask: 255.255.255.0

Basler acA1920-25gc

MAC address: 00-30-53-30-40-d7
Current IP address: 10.0.44.16
Current subnet mask: 255.255.255.0
Current default gateway: 10.0.44.1

Change the IP configuration? [Yn] ____
```

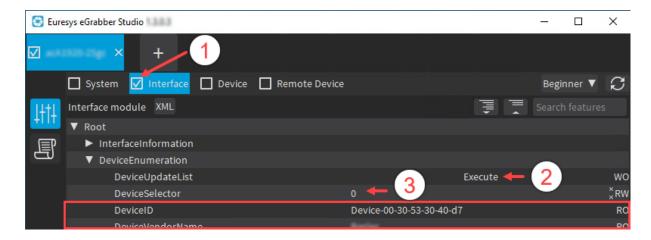
2. If any listed camera is misconfigured (that means that it isn't using the same LAN as the network interface card it is attached to), type \widehat{Y} on the line below its IP settings:

```
MAC address: 00-30-53-30-40-d7
Current IP address: 10.0.44.16
Current subnet mask: 255.255.25.0
Current default gateway: 10.0.44.1

Change the IP configuration? [Yn] Y
New IP address? [default: 10.0.44.16]
```

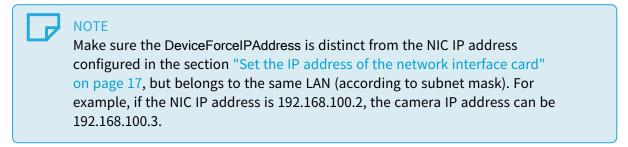
3. Type a valid IP address in the same LAN and press ENTER, then fill in the next fields in the same way.

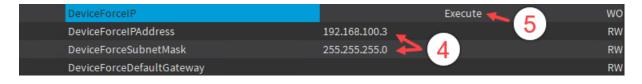
Once the camera IP settings are configured, open **eGrabber Studio** and connect to the GigE Vision camera to finalize the configuration of the network settings.


If **eGrabber Studio** was already running, make sure to refresh the list of discovered grabbers and to reconnect to the requested GigE Vision camera.

Configure the camera IP settings in eGrabber Studio

- 1. In the displayed Features pane, click the Interface tab to open it.
- In the Interface module, in Root > DeviceEnumeration, execute the DeviceUpdateList command.
- 3. To browse through the cameras, type a number (0, 1, 2, and so on) in the DeviceSelector field and press ENTER.


The parameter values of the selected camera are displayed below, starting with the DeviceID:



4. Enter the desired values for the features DeviceForceIPAddress and DeviceForceSubnetMask, as well as for DeviceForceDefaultGateway, if your setup requires it.

The subnet mask must be the same value as the NIC.

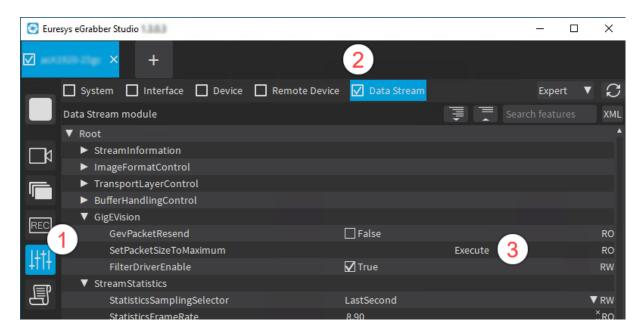
5. When your have entered the desired values, click Execute on the right of DeviceForceIP.

6. Click the cross in the window tab to close the connection:

7. Connect to the stream of the configured GigE Vision camera as explained in section "Select the GigE Vision camera in eGrabber Studio" on page 24.

Set packet size to maximum

Gigelink can automatically configure camera packet size to use the maximum allowed in your setup. However, it only does so on-demand as the process implies trials-and-errors and takes 5-10 seconds.



NOTE

Make sure that you have enabled Jumbo Frames on your computer as described in the section "Enable the Jumbo Packet settings" on page 20.

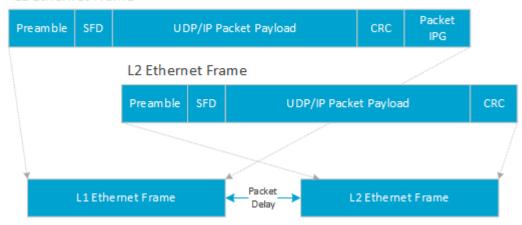
When you are connected to your GigE Vision camera stream in **eGrabber Studio**, proceed as follows to set the packet size to maximum:

- 1. Click the Features icon on the left to open the Features pane.
- 2. Select the Data Stream module.
- 3. In the GigEVision section, click Execute on the SetPacketSizeToMaximum command.

The value found should be reflected in GevSCPSPacketSize property of the remote device (Remote Device module > TransportLayer section).

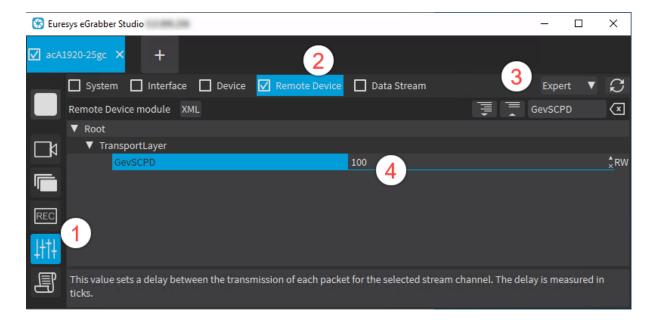
WARNING

Packets used to determine the maximum size are particularly susceptible of being dropped by the firewall. When that occurs, SetPacketSizeToMaximum fails with OPAQUE NETWORK error (code -10024 in Studio).


Set Packet Delay

This step is not necessary if **eGrabber Studio** correctly displays the images coming from the GigE Vision camera. However it helps fix issues where horizontal strips are visible through the image or the bottom of the image is missing.

Packet Delay allows you to adjust spacing between packets, as shown at the bottom of the figure below. The default value is 0, but this may cause queue overflow and other problems due to PC performances. When this occurs, set the Packet Delay value to 100 or higher.


L1 Ethernet Frame

Ethernet frames and packet delay

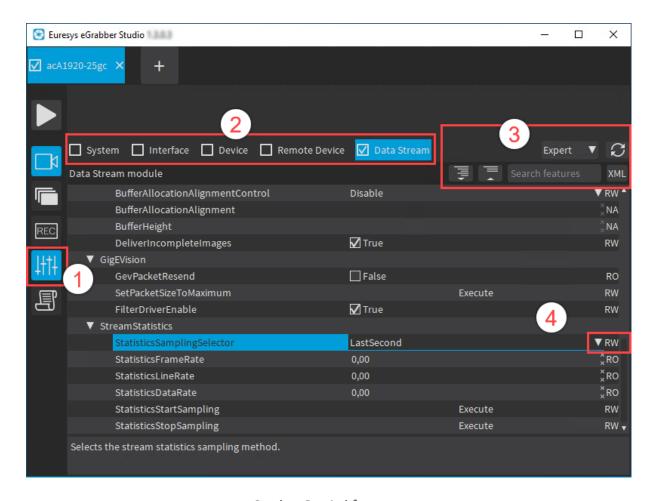
To set packet delay, proceed as follows:

- 1. In **Studio**, click the Features icon on the left to open the Features pane.
- 2. Select the Remote Device module.
- 3. Search for the GevSCPD feature with at least the Expert user profile selected above the search field.
- 4. In the GevSCPD field, type 100 and press ENTER to validate.

NOTE

As the Packet Delay value depends on the camera's time stamp counter, check the recommended values with the camera manufacturer.

3.4. Configure the Camera GenApi Features


Open a GigE Vision stream in eGrabber Studio

- 1. From the Windows Start menu, search for and open Studio.
- 2. In the Sources area, select Gigelink.
- 3. In the eGrabbers area, identify the desired **Gigelink** device and double-click its stream. The stream opens directly in the main window displayed as a tab.

Configure the GenApi features manually

The steps to configure a GenApi feature manually are highlighted on the screenshot below.

- 1. Once you have opened your GigE Vision stream in a window, click the Features button to open the Features pane.
- 2. In the Features pane, select the GenApi module you want to configure features in.
- 3. If requested, use the controls on the right to expand/collapse, filter and/or search for GenApi features.
- 4. When you have identified the feature you want to modify (it must be RW or WO to be editable), select or type the requested value and press ENTER on the keyboard.

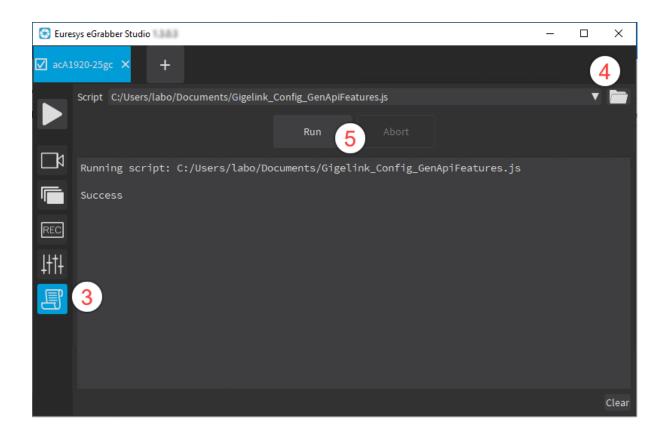
Setting GenApi features

Configure the GenApi features with a script in eGrabber Studio

You can also define the requested values for several GenApi features in a script that you can apply in **eGrabber Studio**.

1. Prepare your script.

You can refer to the following sources:


- sample configuration script for a GigE Vision camera connected with Gigelink
- detailed information on the syntax used in Euresys Script language.
- 2. Save your script on the computer where **eGrabber Studio** is installed.
- 3. In eGrabber Studio, once you have opened your GigE Vision stream in a window, click the Scripts button.

See screenshot below.

- 4. Select your script using the Folder icon.
- 5. Click Run to execute the script.

The result of the script execution appears in the Script pane.

Sample configuration script for a GigE Vision camera

This section goes through a sample configuration for a GigE Vision camera, and provides more information on its instructions.

In the following sample script:

- First, you configure the camera to work in the required mode to be able to use action commands.
- 2. Then, you configure the action command settings.
- 3. Finally, you configure the action 1 as a trigger for acquiring a frame.

```
// This script is used to configure the GenApi features so that a PC can send
// the appropriate Action Command to trigger a GigE Vision camera over the network.

var configure = require ('coaxlink://configurator.js');

var parameters = {
    OperatingMode: "SC",
    AcquisitionMode: "SingleFrame",
    ExposureTime:5500,
};

configure(grabbers[0], parameters);

grabbers[0].StreamPort.set("ControlRemoteDevice", "False");

grabbers[0].RemotePort.set("ActionDeviceKey", 0xcafebabe);

grabbers[0].DevicePort.set("ActionDeviceKey", 0xcafebabe);

grabbers[0].RemotePort.set("ActionSelector", 1);// must match 'Action1' below

grabbers[0].RemotePort.set("ActionGroupKey", 0x42);

grabbers[0].RemotePort.set("ActionGroupMask", 0xffffffff);

grabbers[0].DevicePort.set("ActionGroupKey", 0x42);
```



```
grabbers[0].DevicePort.set("ActionGroupMask", 0xffffffff);

// following parameters configure Action1 as frame trigger
grabbers[0].RemotePort.set("TriggerSelector", "FrameStart");
grabbers[0].RemotePort.set("TriggerMode", "On");
grabbers[0].RemotePort.set("TriggerSource", 'Action1');
```

Load configuration helper

The following line loads the configurator function into the variable configure.

```
var configure = require ('coaxlink://configurator.js');
```

Define generic configuration parameters

With the following instructions, you create the parameters variable and store parameter names and values in the variable.

```
var parameters = {
    OperatingMode: "SC",
    AcquisitionMode: "SingleFrame",
    ExposureTime:5500,
};
```

Apply generic configuration parameters

With the following instruction, you apply the configuration script (loaded in the configure variable) to the grabbers[0] to set the parameters stored in the parameters variable.

For more information on built-in objects grabbers, refer to the Euresys GenApi script section in the Programmer's Guide, sample script doc/grabbers.js.

```
configure(grabbers[0], parameters);
```

Configure the action command feature

- 1. In the first instruction below, you deactivate the automatic acquisition start and stop, as it can interfere while you are configuring the action command feature.
- 2. In the instructions that follow, you configure features used by the action command feature, i.e. DeviceKey, GroupKey and GroupMask, both on the device side and remote device side.

```
grabbers[0].StreamPort.set("ControlRemoteDevice", "False");
grabbers[0].RemotePort.set("ActionDeviceKey", 0xcafebabe);
grabbers[0].DevicePort.set("ActionDeviceKey", 0xcafebabe);
grabbers[0].RemotePort.set("ActionSelector", 1);// must match 'Action1' below
grabbers[0].RemotePort.set("ActionGroupKey", 0x42);
grabbers[0].RemotePort.set("ActionGroupMask", 0xffffffff);
grabbers[0].DevicePort.set("ActionGroupMask", 0xffffffff);
```

Define which trigger is activated when the action command is received

With the following instructions, you configure the FrameStart to be triggered via action command 1.

```
// following parameters configure Action1 as frame trigger
grabbers[0].RemotePort.set("TriggerSelector", "FrameStart");
grabbers[0].RemotePort.set("TriggerMode", "On");
grabbers[0].RemotePort.set("TriggerSource", 'Action1');
```


PART II GENAPI FEATURES

1. Gigelink System Module Register Description

Categorized features list of Systemmodule version 24_03_2

1.1. Root Category	36
1.2. SystemInformation Category	39
1.3. InterfaceEnumeration Category	49

1.1. Root Category

SystemInformation	37
InterfaceEnumeration	38

SystemInformation

Feature Info

Module	Category Path	Туре	Access
System	Root	Category	RW

Category Members

See also: "SystemInformation Category" on page 39

InterfaceEnumeration

Feature Info

Module	Category Path	Туре	Access
System	Root	Category	RW

Category Members

See also: "InterfaceEnumeration Category" on page 49

1.2. SystemInformation Category

TLVendorName	40
TLModelName	41
TLID	42
TLVersion	43
TLPath	44
TLType	45
GenTLVersionMajor	46
GenTLVersionMinor	47
LicenseStatus	48

TLVendorName

Feature Info

Module	Category Path	Туре	Access
System	Root → SystemInformation	String	Imposed: RO

Short Description

Name of the GenTL Producer vendor.

TLModelName

Feature Info

Module	Category Path	Туре	Access
System	$Root \to SystemInformation$	String	Imposed: RO

Short Description

Name of the GenTL Producer.

TLID

Feature Info

Module	Category Path	Туре	Access
System	$Root \to SystemInformation$	String	Imposed: RO

Short Description

Unique identifier of the GenTL.

TLVersion

Feature Info

Module	Category Path	Туре	Access
System	Root → SystemInformation	String	Imposed: RO

Short Description

Vendor specific version string.

TLPath

Feature Info

Module	Category Path	Туре	Access
System	Root → SystemInformation	String	Imposed: RO

Short Description

Full path to the GenTL Producer driver including name and extension.

TLType

Feature Info

Module	Category Path	Type	Access
System	Root → SystemInformation	Enumeration	Imposed: RO

Short Description

Identifies the transport layer technology of the GenTL Producer implementation.

Enumeration Values

• GEV: This enumeration value indicates GigE Vision transport layer technology.

GenTLVersionMajor

Feature Info

Module	Category Path	Туре	Access
System	$Root \to SystemInformation$	IntReg	RO

Register Port: TLPort

Short Description

Major version number of the GenTL specification the GenTL Producer implementation complies with.

GenTLVersionMinor

Feature Info

Module	Category Path	Туре	Access
System	$Root \to SystemInformation$	IntReg	RO

Register Port: TLPort

Short Description

Minor version number of the GenTL specification the GenTL Producer implementation complies with.

LicenseStatus

Feature Info

Module	Category Path	Type	Access
System	Root → SystemInformation	Enumeration	Imposed: RO

Short Description

License Status.

Enumeration Values

• OK: License is OK.

• NotOK: License is not OK.

• Unknown: License status is unknown.

1.3. InterfaceEnumeration Category

InterfaceUpdateList	50
InterfaceSelector	51
InterfaceID	52

Interface Update List

Feature Info

Module	Category Path	Туре	Access
System	Root \rightarrow InterfaceEnumeration	Command	Imposed: WO

Short Description

Updates the internal interface list.

InterfaceSelector

Feature Info

Module	Category Path	Туре	Access
System	$Root \to InterfaceEnumeration$	Integer	RW

Value Info

Minimum value: 0

Short Description

Selector for the different GenTL Producer interfaces.

Selected Features

• "InterfaceID" on page 52

InterfaceID

Feature Info

Module	Category Path	Туре	Access
System	$Root \to InterfaceEnumeration$	String	Imposed: RO

Short Description

GenTL Producer wide unique identifier of the selected interface.

2. Gigelink Interface Module Register Description

Categorized features list of Interfacemodule version 24_03_2

2.1. F	Root Category	.54
2.2. I	InterfaceInformation Category	57
2.3. [DeviceEnumeration Category	.63

2.1. Root Category

InterfaceInformation	 . 55
DeviceEnumeration	 .56

InterfaceInformation

Feature Info

Module	Category Path	Туре	Access
Interface	Root	Category	RW

Category Members

See also: "InterfaceInformation Category" on page 57

DeviceEnumeration

Feature Info

Module	Category Path	Туре	Access
Interface	Root	Category	RW

Category Members

See also: "DeviceEnumeration Category" on page 63

2.2. InterfaceInformation Category

InterfaceID	58
InterfaceType	59
IPAddress	60
SubnetMask	61
AllowBroadcastAck	62

InterfaceID

Feature Info

Module	Category Path	Туре	Access
Interface	Root → InterfaceInformation	String	Imposed: RO

Short Description

GenTL Producer wide unique identifier of the selected interface.

InterfaceType

Feature Info

Module	Category Path	Type	Access
Interface	$Root \to InterfaceInformation$	Enumeration	Imposed: RO

Short Description

Identifies the transport layer technology of the interface.

Enumeration Values

• GEV: This enumeration value indicates GigE Vision transport layer technology.

IPAddress

Feature Info

Module	Category Path	Туре	Access
Interface	Root → InterfaceInformation	String	Imposed: RO

Short Description

IP address of the network interface.

SubnetMask

Feature Info

Module	Category Path	Туре	Access
Interface	Root → InterfaceInformation	String	Imposed: RO

Short Description

Subnet mask of the network interface.

AllowBroadcastAck

Feature Info

Module	Category Path	Туре	Access
Interface	$Root \to InterfaceInformation$	Boolean	RW

Short Description

Allow devices with mismatching network settings to be discovered through broadcast replies to DISCOVERY messages.

2.3. DeviceEnumeration Category

DeviceUpdateList	64
DeviceSelector	65
DeviceID	66
DeviceVendorName	67
DeviceModelName	68
DeviceAccessStatus	69
DeviceCurrentIPAddress	70
DeviceCurrentSubnetMask	71
DeviceCurrentDefaultGateway	72
DeviceUserDefinedName	73
DeviceSerialNumber	74
DeviceVersion	75
DeviceForceIP	76
DeviceForceIPAddress	77
DeviceForceSubnetMask	78
DeviceForceDefaultGateway	79

DeviceUpdateList

Feature Info

Module	Category Path	Туре	Access
Interface	Root → DeviceEnumeration	Command	Imposed: WO

Short Description

Updates the internal device list.

DeviceSelector

Feature Info

Module	Category Path	Туре	Access
Interface	$Root \to DeviceEnumeration$	Integer	RW

Value Info

Minimum value: 0

Short Description

Selector for the different devices on this interface.

Selected Features

- "DeviceID" on page 66
- "DeviceVendorName" on page 67
- "DeviceModelName" on page 68
- "DeviceAccessStatus" on page 69
- "DeviceCurrentIPAddress" on page 70
- "DeviceCurrentSubnetMask" on page 71
- "DeviceCurrentDefaultGateway" on page 72
- "DeviceUserDefinedName" on page 73
- "DeviceSerialNumber" on page 74
- "DeviceVersion" on page 75
- "DeviceForceIP" on page 76

DeviceID

Feature Info

Module	Category Path	Туре	Access
Interface	Root → DeviceEnumeration	String	Imposed: RO

Short Description

Interface wide unique identifier of the selected device.

DeviceVendorName

Feature Info

Module	Category Path	Туре	Access
Interface	Root → DeviceEnumeration	String	Imposed: RO

Short Description

Name of the device vendor.

DeviceModelName

Feature Info

Module	Category Path	Туре	Access
Interface	Root → DeviceEnumeration	String	Imposed: RO

Short Description

Name of the device model.

DeviceAccessStatus

Feature Info

Module	Category Path	Type	Access
Interface	Root → DeviceEnumeration	Enumeration	Imposed: RO

Short Description

Gives the device's access status at the moment of the last execution of DeviceUpdateList.

Enumeration Values

- Unknown: Unknown access.
- ReadWrite: Available to be opened with full access.
- ReadOnly: Available to be opened with read-only access.
- NoAccess: Not reachable.
- Busy: Already opened by another entity.
- OpenReadWrite: Opened with read-write access.
- OpenReadOnly: Opened with read-only access.

DeviceCurrentIPAddress

Feature Info

Module	Category Path	Туре	Access
Interface	Root → DeviceEnumeration	String	Imposed: RO

Short Description

Current IP address of the selected device.

DeviceCurrentSubnetMask

Feature Info

Module	Category Path	Туре	Access
Interface	Root → DeviceEnumeration	String	Imposed: RO

Short Description

Current subnet mask of the selected device.

DeviceCurrentDefaultGateway

Feature Info

Module	Category Path	Туре	Access
Interface	$Root \to DeviceEnumeration$	String	Imposed: RO

Short Description

Current default gateway of the selected device.

DeviceUserDefinedName

Feature Info

Module	Category Path	Туре	Access
Interface	Root → DeviceEnumeration	String	Imposed: RO

Short Description

User-defined name of the selected device.

DeviceSerialNumber

Feature Info

Module	Category Path	Туре	Access
Interface	$Root \to DeviceEnumeration$	String	Imposed: RO

Short Description

Serial Number of the selected device.

DeviceVersion

Feature Info

Module	Category Path	Туре	Access
Interface	Root → DeviceEnumeration	String	Imposed: RO

Short Description

Version of the selected device.

DeviceForceIP

Feature Info

Module	Category Path	Туре	Access
Interface	Root → DeviceEnumeration	Command	Imposed: WO

Short Description

Force use of DeviceForceIPAddress, DeviceForceSubnetMask, and DeviceForceDefaultGateway for the selected device.

DeviceForceIPAddress

Feature Info

Module	Category Path	Туре	Access
Interface	$Root \to DeviceEnumeration$	String	RW

Short Description

IP address used in DeviceForceIP command.

DeviceForceSubnetMask

Feature Info

Module	Category Path	Туре	Access
Interface	Root → DeviceEnumeration	String	RW

Short Description

Subnet mask used in DeviceForceIP command.

DeviceForceDefaultGateway

Feature Info

Module	Category Path	Туре	Access
Interface	$Root \rightarrow DeviceEnumeration$	String	RW

Short Description

Default gateway used in DeviceForceIP command.

3. Gigelink Device Module Register Description

Categorized features list of Devicemodule version 24_03_2

3.1. Root Category	81
3.2. DeviceInformation Category	85
3.3. StreamEnumeration Category	92
3.4. GigEVision Category	9!

3.1. Root Category

DeviceInformation	.82
StreamEnumeration	. 83
GigEVision	. 84

DeviceInformation

Feature Info

Module	Category Path	Туре	Access
Device	Root	Category	RW

Category Members

See also: "DeviceInformation Category" on page 85

StreamEnumeration

Feature Info

Module	Category Path	Type	Access
Device	Root	Category	RW

Category Members

See also: "StreamEnumeration Category" on page 92

GigEVision

Feature Info

Module	Category Path	Туре	Access
Device	Root	Category	RW

Category Members

See also: "GigEVision Category" on page 95

3.2. DeviceInformation Category

DeviceID	86
DeviceVendorName	87
DeviceModelName	88
DeviceAccessStatus	89
DeviceType	90
DeviceDescription	91

DeviceID

Feature Info

Module	Category Path	Туре	Access
Device	Root → DeviceInformation	String	Imposed: RO

Short Description

Interface wide unique identifier of this device.

DeviceVendorName

Feature Info

Module	Category Path	Туре	Access
Device	Root → DeviceInformation	String	Imposed: RO

Short Description

Name of the device vendor.

DeviceModelName

Feature Info

Module	Category Path	Туре	Access
Device	Root → DeviceInformation	String	Imposed: RO

Short Description

Name of the device model.

DeviceAccessStatus

Feature Info

Module	Category Path	Type	Access
Device	Root → DeviceInformation	Enumeration	Imposed: RO

Short Description

Gives the device's access status at the moment of the last execution of DeviceUpdateList.

Enumeration Values

- Unknown: Unknown access.
- ReadWrite: Available to be opened with full access.
- ReadOnly: Available to be opened with read-only access.
- NoAccess: Not reachable.
- Busy: Already opened by another entity.
- OpenReadWrite: Opened with read-write access.
- OpenReadOnly: Opened with read-only access.

DeviceType

Feature Info

Module	Category Path	Type	Access
Device	Root → DeviceInformation	Enumeration	Imposed: RO

Short Description

Identifies the transport layer technology of the interface.

Enumeration Values

• GEV: This enumeration value indicates GigE Vision transport layer technology.

DeviceDescription

Feature Info

Module	Category Path	Туре	Access
Device	$Root \rightarrow DeviceInformation$	String	Imposed: RO

Short Description

Description of the device.

3.3. StreamEnumeration Category

StreamSelector	or	93
StreamID		94

StreamSelector

Feature Info

Module	Category Path	Туре	Access
Device	$Root \to StreamEnumeration$	Integer	RW

Value Info

Minimum value: 0

Short Description

Selector for the different stream channels.

Selected Features

• "StreamID" on page 94

StreamID

Feature Info

Module	Category Path	Туре	Access
Device	$Root \rightarrow StreamEnumeration$	String	Imposed: RO

Short Description

Device unique ID for the stream.

3.4. GigEVision Category

DeviceLinkHeartbeatTimeout	96
ActionDeviceKey	97
ActionGroupKey	98
ActionGroupMask	99
ExecuteAction	100

DeviceLinkHeartbeatTimeout

Feature Info

Module	Category Path	Туре	Access
Device	$Root \to GigEVision$	FloatReg	RW

Register Port: DevicePort

Value Info

Unit: microseconds

Short Description

Writing a new heartbeat timeout will affect both device GevHeartbeatTimeout and keep-alive delays on the host

ActionDeviceKey

Feature Info

Module	Category Path	Туре	Access
Device	$Root \to GigEVision$	IntReg	WO

Register Port: DevicePort

Short Description

Action Device Key.

ActionGroupKey

Feature Info

Module	Category Path	Туре	Access
Device	$Root \to GigEVision$	IntReg	RW

Register Port: DevicePort

Short Description

Action Group Key.

Action Group Mask

Feature Info

Module	Category Path	Туре	Access
Device	Root → GigEVision	IntReg	RW

Register Port: DevicePort

Short Description

Action Group Mask.

ExecuteAction

Feature Info

Module	Category Path	Туре	Access
Device	Root → GigEVision	Command	Imposed: WO

Short Description

Execute Action.

4. Gigelink Data Stream Module Register Description

Categorized features list of Data Streammodule version 24_03_2

4.1. Root Category	102
4.2. StreamInformation Category	111
4.3. ImageFormatControl Category	116
4.4. TransportLayerControl Category	145
4.5. BufferHandlingControl Category	148
4.6. GigEVision Category	170
4.7. StreamControl Category	174
4.8. EventControl Category	178
4.9. StreamStatistics Category	186

4.1. Root Category

StreamInformation	103
ImageFormatControl	104
TransportLayerControl	105
BufferHandlingControl	106
StreamControl	107
GigEVision	108
EventControl	109
StreamStatistics	110

StreamInformation

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root	Category	RW

Category Members

See also: "StreamInformation Category" on page 111

ImageFormatControl

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root	Category	RW

Category Members

See also: "ImageFormatControl Category" on page 116

Transport Layer Control

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root	Category	RW

Category Members

See also: "TransportLayerControl Category" on page 145

Buffer Handling Control

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root	Category	RW

Category Members

See also: "BufferHandlingControl Category" on page 148

StreamControl

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root	Category	RW

Category Members

See also: "StreamControl Category" on page 174

GigEVision

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root	Category	RW

Category Members

See also: "GigEVision Category" on page 170

EventControl

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root	Category	RW

Category Members

See also: "EventControl Category" on page 178

StreamStatistics

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root	Category	RW

Category Members

See also: "StreamStatistics Category" on page 186

4.2. StreamInformation Category

StreamID	112
StreamType	113
StreamDescription	114
StreamConfigurationStatus	115

StreamID

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → StreamInformation	String	Imposed: RO

Short Description

Device unique ID for the data stream.

StreamType

Feature Info

Module	Category Path	Type	Access
Data Stream	Root → StreamInformation	Enumeration	Imposed: RO

Short Description

Identifies the transport layer technology of the interface.

Enumeration Values

• GEV: This enumeration value indicates GigE Vision transport layer technology.

StreamDescription

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → StreamInformation	String	Imposed: RO

Short Description

Description of the stream.

StreamConfigurationStatus

Feature Info

Module	Category Path	Type	Access
Data Stream	Root → StreamInformation	Enumeration	Imposed: RO

Short Description

Stream Configuration Status.

- OK:
- UnknownError:
- BayerDecoderAndUnpackingModeMsbNotAllowed:
- BayerDecoderAndUnpackingModeOffNotAllowed:
- BinningAndFormatNotAllowed:
- BinningAndUnpackingModeNotAllowed:
- BinningConfigAndFormatDepthNotAllowed:
- LleNotImplemented:
- LleAndFormatNotAllowed:
- LutAndBayerFormatNotAllowed:
- LutAndLleNotAllowed:
- LutAndMultiComponentFormatNotAllowed:
- LutAndPackedFormatNotAllowed:
- LutAndUnpackingModeOffNotAllowed:
- LutConfigAndFormatDepthDontMatch:
- WidthNotAligned:
- CameraWidthNotAlignedToBinningWindow:
- CameraHeightNotAlignedToBinningWindow:
- UnpackingModeOffAnd16bitFormatNotAllowed:
- UnpackingModeOffAndFormatNotAllowed:
- ReverseXAndFormatNotAllowed:
- ReverseXAndUnpackingModeNotAllowed:
- CameraWidthTooLargeForReverseX:

4.3. ImageFormatControl Category

PixelFormat	117
PixelFormatNamespace	127
PixelSize	128
PixelComponentCount	129
Width	130
Height	133
ImageFormatSource	132
RemotePixelFormat	133
RemoteWidth	143
RemoteHeight	144

PixelFormat

Feature Info

Module	Category Path	Type	Access
Data Stream	Root → ImageFormatControl	Enumeration	Imposed: RO

Short Description

Pixel format of the image.

- BayerBG10pmsb: BayerBG10pmsb.
- BayerBG12pmsb: BayerBG12pmsb.
- BayerBG14pmsb: BayerBG14pmsb.
- BayerGB10pmsb: BayerGB10pmsb.
- BayerGB12pmsb: BayerGB12pmsb.
- BayerGB14pmsb: BayerGB14pmsb.
- BayerGR10pmsb: BayerGR10pmsb.
- BayerGR12pmsb: BayerGR12pmsb.
- BayerGR14pmsb: BayerGR14pmsb.
- BayerRG10pmsb: BayerRG10pmsb.
- BayerRG12pmsb: BayerRG12pmsb.
- BayerRG14pmsb: BayerRG14pmsb.
- Mono10pmsb: Mono10pmsb.
- Mono12pmsb: Mono12pmsb.
- Mono14pmsb: Mono14pmsb.
- RGB10pmsb: RGB10pmsb.
- RGB12pmsb: RGB12pmsb.
- RGB14pmsb: RGB14pmsb.
- RGBa10pmsb: RGBa10pmsb.
- RGBa12pmsb: RGBa12pmsb.
- RGBa14pmsb: RGBa14pmsb.
- YCbCr601_10pmsb: YCbCr601_10pmsb.
- YCbCr601_12pmsb: YCbCr601_12pmsb.
- YCbCr601_14pmsb: YCbCr601_14pmsb.

- YCbCr601_16: YCbCr601_16.
- YCbCr601_411_10pmsb: YCbCr601_411_10pmsb.
- YCbCr601_411_12pmsb: YCbCr601_411_12pmsb.
- YCbCr601_411_14pmsb: YCbCr601_411_14pmsb.
- YCbCr601_411_16: YCbCr601_411_16.
- YCbCr601_411_8: YCbCr601_411_8.
- YCbCr601_422_10pmsb: YCbCr601_422_10pmsb.
- YCbCr601_422_12pmsb: YCbCr601_422_12pmsb.
- YCbCr601_422_14pmsb: YCbCr601_422_14pmsb.
- YCbCr601_422_16: YCbCr601_422_16.
- YCbCr601_8: YCbCr601_8.
- YCbCr709_10pmsb: YCbCr709_10pmsb.
- YCbCr709_12pmsb: YCbCr709_12pmsb.
- YCbCr709_14pmsb: YCbCr709_14pmsb.
- YCbCr709_16: YCbCr709_16.
- YCbCr709_411_10pmsb: YCbCr709_411_10pmsb.
- YCbCr709_411_12pmsb: YCbCr709_411_12pmsb.
- YCbCr709_411_14pmsb: YCbCr709_411_14pmsb.
- YCbCr709_411_16: YCbCr709_411_16.
- YCbCr709_411_8: YCbCr709_411_8.
- YCbCr709_422_10pmsb: YCbCr709_422_10pmsb.
- YCbCr709_422_12pmsb: YCbCr709_422_12pmsb.
- YCbCr709_422_14pmsb: YCbCr709_422_14pmsb.
- YCbCr709_422_16: YCbCr709_422_16.
- YCbCr709_8: YCbCr709_8.
- YUV10pmsb: YUV10pmsb.
- YUV12pmsb: YUV12pmsb.
- YUV14pmsb: YUV14pmsb.
- YUV16: YUV16.
- YUV411_10pmsb: YUV411_10pmsb.
- YUV411_12pmsb: YUV411_12pmsb.
- YUV411_14pmsb: YUV411_14pmsb.
- YUV411_16: YUV411_16.
- YUV411_8: YUV411_8.
- YUV422_10pmsb: YUV422_10pmsb.
- YUV422_12pmsb: YUV422_12pmsb.

- YUV422_14pmsb: YUV422_14pmsb.
- YUV422_16: YUV422_16.
- YUV8: YUV8.
- B10: Blue 10-bit.
- B12: Blue 12-bit.
- B16: Blue 16-bit.
- B8: Blue 8-bit.
- BayerBG10: Bayer Blue-Green 10-bit unpacked.
- BayerBG10p: Bayer Blue-Green 10-bit packed.
- BayerBG10Packed: Bayer Blue-Green 10-bit packed.
- BayerBG12: Bayer Blue-Green 12-bit unpacked.
- BayerBG12p: Bayer Blue-Green 12-bit packed.
- BayerBG12Packed: Bayer Blue-Green 12-bit packed.
- BayerBG14: Bayer Blue-Green 14-bit.
- BayerBG14p: Bayer Blue-Green 14-bit packed.
- BayerBG16: Bayer Blue-Green 16-bit.
- BayerBG4p: Bayer Blue-Green 4-bit packed.
- BayerBG8: Bayer Blue-Green 8-bit.
- BayerGB10: Bayer Green-Blue 10-bit unpacked.
- BayerGB10p: Bayer Green-Blue 10-bit packed.
- BayerGB10Packed: Bayer Green-Blue 10-bit packed.
- BayerGB12: Bayer Green-Blue 12-bit unpacked.
- BayerGB12p: Bayer Green-Blue 12-bit packed.
- BayerGB12Packed: Bayer Green-Blue 12-bit packed.
- BayerGB14: Bayer Green-Blue 14-bit.
- BayerGB14p: Bayer Green-Blue 14-bit packed.
- BayerGB16: Bayer Green-Blue 16-bit.
- BayerGB4p: Bayer Green-Blue 4-bit packed.
- BayerGB8: Bayer Green-Blue 8-bit.
- BayerGR10: Bayer Green-Red 10-bit unpacked.
- BayerGR10p: Bayer Green-Red 10-bit packed.
- BayerGR10Packed: Bayer Green-Red 10-bit packed.
- BayerGR12: Bayer Green-Red 12-bit unpacked.
- BayerGR12p: Bayer Green-Red 12-bit packed.
- BayerGR12Packed: Bayer Green-Red 12-bit packed.
- BayerGR14: Bayer Green-Red 14-bit.

- BayerGR14p: Bayer Green-Red 14-bit packed.
- BayerGR16: Bayer Green-Red 16-bit.
- BayerGR4p: Bayer Green-Red 4-bit packed.
- BayerGR8: Bayer Green-Red 8-bit.
- BayerRG10: Bayer Red-Green 10-bit unpacked.
- BayerRG10p: Bayer Red-Green 10-bit packed.
- BayerRG10Packed: Bayer Red-Green 10-bit packed.
- BayerRG12: Bayer Red-Green 12-bit unpacked.
- BayerRG12p: Bayer Red-Green 12-bit packed.
- BayerRG12Packed: Bayer Red-Green 12-bit packed.
- BayerRG14: Bayer Red-Green 14-bit.
- BayerRG14p: Bayer Red-Green 14-bit packed.
- BayerRG16: Bayer Red-Green 16-bit.
- BayerRG4p: Bayer Red-Green 4-bit packed.
- BayerRG8: Bayer Red-Green 8-bit.
- BGR10: Blue-Green-Red 10-bit unpacked.
- BGR10p: Blue-Green-Red 10-bit packed.
- BGR12: Blue-Green-Red 12-bit unpacked.
- BGR12p: Blue-Green-Red 12-bit packed.
- BGR14: Blue-Green-Red 14-bit unpacked.
- BGR16: Blue-Green-Red 16-bit.
- BGR565p: Blue-Green-Red 5/6/5-bit packed.
- BGR8: Blue-Green-Red 8-bit.
- BGR8a32: BGR8a32.
- BGRa10: Blue-Green-Red-alpha 10-bit unpacked.
- BGRa10p: Blue-Green-Red-alpha 10-bit packed.
- BGRa12: Blue-Green-Red-alpha 12-bit unpacked.
- BGRa12p: Blue-Green-Red-alpha 12-bit packed.
- BGRa14: Blue-Green-Red-alpha 14-bit unpacked.
- BGRa16: Blue-Green-Red-alpha 16-bit.
- BGRa8: Blue-Green-Red-alpha 8-bit.
- BiColorBGRG10: Bi-color Blue/Green Red/Green 10-bit unpacked.
- BiColorBGRG10p: Bi-color Blue/Green Red/Green 10-bit packed.
- BiColorBGRG12: Bi-color Blue/Green Red/Green 12-bit unpacked.
- BiColorBGRG12p: Bi-color Blue/Green Red/Green 12-bit packed.
- BiColorBGRG8: Bi-color Blue/Green Red/Green 8-bit.

- BiColorRGBG10: Bi-color Red/Green Blue/Green 10-bit unpacked.
- BiColorRGBG10p: Bi-color Red/Green Blue/Green 10-bit packed.
- BiColorRGBG12: Bi-color Red/Green Blue/Green 12-bit unpacked.
- BiColorRGBG12p: Bi-color Red/Green Blue/Green 12-bit packed.
- BiColorRGBG8: Bi-color Red/Green Blue/Green 8-bit.
- Confidence1: Confidence 1-bit unpacked.
- Confidence16: Confidence 16-bit.
- Confidence1p: Confidence 1-bit packed.
- Confidence32f: Confidence 32-bit floating point.
- Confidence8: Confidence 8-bit.
- Coord3D_A10p: 3D coordinate A 10-bit packed.
- Coord3D_A12p: 3D coordinate A 12-bit packed.
- Coord3D_A16: 3D coordinate A 16-bit.
- Coord3D_A32f: 3D coordinate A 32-bit floating point.
- Coord3D_A8: 3D coordinate A 8-bit.
- Coord3D_ABC10p: 3D coordinate A-B-C 10-bit packed.
- Coord3D_ABC10p_Planar: 3D coordinate A-B-C 10-bit packed planar.
- Coord3D_ABC12p: 3D coordinate A-B-C 12-bit packed.
- Coord3D_ABC12p_Planar: 3D coordinate A-B-C 12-bit packed planar.
- Coord3D_ABC16: 3D coordinate A-B-C 16-bit.
- Coord3D_ABC16_Planar: 3D coordinate A-B-C 16-bit planar.
- Coord3D_ABC32f: 3D coordinate A-B-C 32-bit floating point.
- Coord3D_ABC32f_Planar: 3D coordinate A-B-C 32-bit floating point planar.
- Coord3D_ABC8: 3D coordinate A-B-C 8-bit.
- Coord3D_ABC8_Planar: 3D coordinate A-B-C 8-bit planar.
- Coord3D_AC10p: 3D coordinate A-C 10-bit packed.
- Coord3D_AC10p_Planar: 3D coordinate A-C 10-bit packed planar.
- Coord3D_AC12p: 3D coordinate A-C 12-bit packed.
- Coord3D_AC12p_Planar: 3D coordinate A-C 12-bit packed planar.
- Coord3D_AC16: 3D coordinate A-C 16-bit.
- Coord3D_AC16_Planar: 3D coordinate A-C 16-bit planar.
- Coord3D_AC32f: 3D coordinate A-C 32-bit floating point.
- Coord3D_AC32f_Planar: 3D coordinate A-C 32-bit floating point planar.
- Coord3D_AC8: 3D coordinate A-C 8-bit.
- Coord3D_AC8_Planar: 3D coordinate A-C 8-bit planar.
- Coord3D_B10p: 3D coordinate B 10-bit packed.

- Coord3D_B12p: 3D coordinate B 12-bit packed.
- Coord3D B16: 3D coordinate B 16-bit.
- Coord3D_B32f: 3D coordinate B 32-bit floating point.
- Coord3D_B8: 3D coordinate B 8-bit.
- Coord3D_C10p: 3D coordinate C 10-bit packed.
- Coord3D_C12p: 3D coordinate C 12-bit packed.
- Coord3D_C16: 3D coordinate C 16-bit.
- Coord3D_C32f: 3D coordinate C 32-bit floating point.
- Coord3D_C8: 3D coordinate C 8-bit.
- CustomBayerBG14: CustomBayerBG14.
- CustomBayerGB14: CustomBayerGB14.
- CustomBayerGR14: CustomBayerGR14.
- CustomBayerRG14: CustomBayerRG14.
- CustomJFIF: CustomJFIF.
- G10: Green 10-bit.
- G12: Green 12-bit.
- G16: Green 16-bit.
- G8: Green 8-bit.
- Mono10: Monochrome 10-bit unpacked.
- Mono10p: Monochrome 10-bit packed.
- Mono10Packed: Monochrome 10-bit packed.
- Mono12: Monochrome 12-bit unpacked.
- Mono12p: Monochrome 12-bit packed.
- Mono12Packed: Monochrome 12-bit packed.
- Mono14: Monochrome 14-bit unpacked.
- Mono14p: Monochrome 14-bit packed.
- Mono16: Monochrome 16-bit.
- Mono1p: Monochrome 1-bit packed.
- Mono2p: Monochrome 2-bit packed.
- Mono32: Monochrome 32-bit.
- Mono4p: Monochrome 4-bit packed.
- Mono8: Monochrome 8-bit.
- Mono8s: Monochrome 8-bit signed.
- R10: Red 10-bit.
- R12: Red 12-bit.
- R16: Red 16-bit.

- R8: Red 8-bit.
- RGB10: Red-Green-Blue 10-bit unpacked.
- RGB10_Planar: Red-Green-Blue 10-bit unpacked planar.
- RGB10p: Red-Green-Blue 10-bit packed.
- RGB10p32: Red-Green-Blue 10-bit packed into 32-bit.
- RGB10V1Packed: Red-Green-Blue 10-bit packed variant 1.
- RGB12: Red-Green-Blue 12-bit unpacked.
- RGB12_Planar: Red-Green-Blue 12-bit unpacked planar.
- RGB12p: Red-Green-Blue 12-bit packed.
- RGB12V1Packed: Red-Green-Blue 12-bit packed variant 1.
- RGB14: Red-Green-Blue 14-bit unpacked.
- RGB16: Red-Green-Blue 16-bit.
- RGB16_Planar: Red-Green-Blue 16-bit planar.
- RGB565p: Red-Green-Blue 5/6/5-bit packed.
- RGB8: Red-Green-Blue 8-bit.
- RGB8_Planar: Red-Green-Blue 8-bit planar.
- RGB8a32: RGB8a32.
- RGBa10: Red-Green-Blue-alpha 10-bit unpacked.
- RGBa10p: Red-Green-Blue-alpha 10-bit packed.
- RGBa12: Red-Green-Blue-alpha 12-bit unpacked.
- RGBa12p: Red-Green-Blue-alpha 12-bit packed.
- RGBa14: Red-Green-Blue-alpha 14-bit unpacked.
- RGBa16: Red-Green-Blue-alpha 16-bit.
- RGBa8: Red-Green-Blue-alpha 8-bit.
- SCF1WBWG10: Sparse Color Filter #1 White-Blue-White-Green 10-bit unpacked.
- SCF1WBWG10p: Sparse Color Filter #1 White-Blue-White-Green 10-bit packed.
- SCF1WBWG12: Sparse Color Filter #1 White-Blue-White-Green 12-bit unpacked.
- SCF1WBWG12p: Sparse Color Filter #1 White-Blue-White-Green 12-bit packed.
- SCF1WBWG14: Sparse Color Filter #1 White-Blue-White-Green 14-bit unpacked.
- SCF1WBWG16: Sparse Color Filter #1 White-Blue-White-Green 16-bit unpacked.
- SCF1WBWG8: Sparse Color Filter #1 White-Blue-White-Green 8-bit.
- SCF1WGWB10: Sparse Color Filter #1 White-Green-White-Blue 10-bit unpacked.
- SCF1WGWB10p: Sparse Color Filter #1 White-Green-White-Blue 10-bit packed.
- SCF1WGWB12: Sparse Color Filter #1 White-Green-White-Blue 12-bit unpacked.
- SCF1WGWB12p: Sparse Color Filter #1 White-Green-White-Blue 12-bit packed.
- SCF1WGWB14: Sparse Color Filter #1 White-Green-White-Blue 14-bit unpacked.

- SCF1WGWB16: Sparse Color Filter #1 White-Green-White-Blue 16-bit.
- SCF1WGWB8: Sparse Color Filter #1 White-Green-White-Blue 8-bit.
- SCF1WGWR10: Sparse Color Filter #1 White-Green-White-Red 10-bit unpacked.
- SCF1WGWR10p: Sparse Color Filter #1 White-Green-White-Red 10-bit packed.
- SCF1WGWR12: Sparse Color Filter #1 White-Green-White-Red 12-bit unpacked.
- SCF1WGWR12p: Sparse Color Filter #1 White-Green-White-Red 12-bit packed.
- SCF1WGWR14: Sparse Color Filter #1 White-Green-White-Red 14-bit unpacked.
- SCF1WGWR16: Sparse Color Filter #1 White-Green-White-Red 16-bit.
- SCF1WGWR8: Sparse Color Filter #1 White-Green-White-Red 8-bit.
- SCF1WRWG10: Sparse Color Filter #1 White-Red-White-Green 10-bit unpacked.
- SCF1WRWG10p: Sparse Color Filter #1 White-Red-White-Green 10-bit packed.
- SCF1WRWG12: Sparse Color Filter #1 White-Red-White-Green 12-bit unpacked.
- SCF1WRWG12p: Sparse Color Filter #1 White-Red-White-Green 12-bit packed.
- SCF1WRWG14: Sparse Color Filter #1 White-Red-White-Green 14-bit unpacked.
- SCF1WRWG16: Sparse Color Filter #1 White-Red-White-Green 16-bit.
- SCF1WRWG8: Sparse Color Filter #1 White-Red-White-Green 8-bit.
- YCbCr10_CbYCr: YCbCr 4:4:4 10-bit unpacked.
- YCbCr10p_CbYCr: YCbCr 4:4:4 10-bit packed.
- YCbCr12_CbYCr: YCbCr 4:4:4 12-bit unpacked.
- YCbCr12p_CbYCr: YCbCr 4:4:4 12-bit packed.
- YCbCr2020_10_CbYCr: YCbCr 4:4:4 10-bit unpacked BT.2020.
- YCbCr2020_10p_CbYCr: YCbCr 4:4:4 10-bit packed BT.2020.
- YCbCr2020_12_CbYCr: YCbCr 4:4:4 12-bit unpacked BT.2020.
- YCbCr2020_12p_CbYCr: YCbCr 4:4:4 12-bit packed BT.2020.
- YCbCr2020_411_8_CbYYCrYY: YCbCr 4:1:1 8-bit BT.2020.
- YCbCr2020_422_10: YCbCr 4:2:2 10-bit unpacked BT.2020.
- YCbCr2020_422_10_CbYCrY: YCbCr 4:2:2 10-bit unpacked BT.2020.
- YCbCr2020_422_10p: YCbCr 4:2:2 10-bit packed BT.2020.
- YCbCr2020_422_10p_CbYCrY: YCbCr 4:2:2 10-bit packed BT.2020.
- YCbCr2020_422_12: YCbCr 4:2:2 12-bit unpacked BT.2020.
- YCbCr2020_422_12_CbYCrY: YCbCr 4:2:2 12-bit unpacked BT.2020.
- YCbCr2020_422_12p: YCbCr 4:2:2 12-bit packed BT.2020.
- YCbCr2020_422_12p_CbYCrY: YCbCr 4:2:2 12-bit packed BT.2020.
- YCbCr2020_422_8: YCbCr 4:2:2 8-bit BT.2020.
- YCbCr2020_422_8_CbYCrY: YCbCr 4:2:2 8-bit BT.2020.
- YCbCr2020_8_CbYCr: YCbCr 4:4:4 8-bit BT.2020.

- YCbCr411_8: YCbCr 4:1:1 8-bit.
- YCbCr411_8_CbYYCrYY: YCbCr 4:1:1 8-bit.
- YCbCr420_8_YY_CbCr_Semiplanar: YCbCr 4:2:0 8-bit YY/CbCr Semiplanar.
- YCbCr420_8_YY_CrCb_Semiplanar: YCbCr 4:2:0 8-bit YY/CrCb Semiplanar.
- YCbCr422_10: YCbCr 4:2:2 10-bit unpacked.
- YCbCr422_10_CbYCrY: YCbCr 4:2:2 10-bit unpacked.
- YCbCr422_10p: YCbCr 4:2:2 10-bit packed.
- YCbCr422_10p_CbYCrY: YCbCr 4:2:2 10-bit packed.
- YCbCr422_12: YCbCr 4:2:2 12-bit unpacked.
- YCbCr422_12_CbYCrY: YCbCr 4:2:2 12-bit unpacked.
- YCbCr422_12p: YCbCr 4:2:2 12-bit packed.
- YCbCr422_12p_CbYCrY: YCbCr 4:2:2 12-bit packed.
- YCbCr422_8: YCbCr 4:2:2 8-bit.
- YCbCr422_8_CbYCrY: YCbCr 4:2:2 8-bit.
- YCbCr422_8_YY_CbCr_Semiplanar: YCbCr 4:2:2 8-bit YY/CbCr Semiplanar.
- YCbCr422_8_YY_CrCb_Semiplanar: YCbCr 4:2:2 8-bit YY/CrCb Semiplanar.
- YCbCr601_10_CbYCr: YCbCr 4:4:4 10-bit unpacked BT.601.
- YCbCr601_10p_CbYCr: YCbCr 4:4:4 10-bit packed BT.601.
- YCbCr601_12_CbYCr: YCbCr 4:4:4 12-bit unpacked BT.601.
- YCbCr601_12p_CbYCr: YCbCr 4:4:4 12-bit packed BT.601.
- YCbCr601_411_8_CbYYCrYY: YCbCr 4:1:1 8-bit BT.601.
- YCbCr601_422_10: YCbCr 4:2:2 10-bit unpacked BT.601.
- YCbCr601_422_10_CbYCrY: YCbCr 4:2:2 10-bit unpacked BT.601.
- YCbCr601_422_10p: YCbCr 4:2:2 10-bit packed BT.601.
- YCbCr601_422_10p_CbYCrY: YCbCr 4:2:2 10-bit packed BT.601.
- YCbCr601_422_12: YCbCr 4:2:2 12-bit unpacked BT.601.
- YCbCr601_422_12_CbYCrY: YCbCr 4:2:2 12-bit unpacked BT.601.
- YCbCr601_422_12p: YCbCr 4:2:2 12-bit packed BT.601.
- YCbCr601_422_12p_CbYCrY: YCbCr 4:2:2 12-bit packed BT.601.
- YCbCr601_422_8: YCbCr 4:2:2 8-bit BT.601.
- YCbCr601_422_8_CbYCrY: YCbCr 4:2:2 8-bit BT.601.
- YCbCr601_8_CbYCr: YCbCr 4:4:4 8-bit BT.601.
- YCbCr709_10_CbYCr: YCbCr 4:4:4 10-bit unpacked BT.709.
- YCbCr709_10p_CbYCr: YCbCr 4:4:4 10-bit packed BT.709.
- YCbCr709_12_CbYCr: YCbCr 4:4:4 12-bit unpacked BT.709.
- YCbCr709_12p_CbYCr: YCbCr 4:4:4 12-bit packed BT.709.

- YCbCr709_411_8_CbYYCrYY: YCbCr 4:1:1 8-bit BT.709.
- YCbCr709_422_10: YCbCr 4:2:2 10-bit unpacked BT.709.
- YCbCr709_422_10_CbYCrY: YCbCr 4:2:2 10-bit unpacked BT.709.
- YCbCr709_422_10p: YCbCr 4:2:2 10-bit packed BT.709.
- YCbCr709_422_10p_CbYCrY: YCbCr 4:2:2 10-bit packed BT.709.
- YCbCr709_422_12: YCbCr 4:2:2 12-bit unpacked BT.709.
- YCbCr709_422_12_CbYCrY: YCbCr 4:2:2 12-bit unpacked BT.709.
- YCbCr709_422_12p: YCbCr 4:2:2 12-bit packed BT.709.
- YCbCr709_422_12p_CbYCrY: YCbCr 4:2:2 12-bit packed BT.709.
- YCbCr709_422_8: YCbCr 4:2:2 8-bit BT.709.
- YCbCr709_422_8_CbYCrY: YCbCr 4:2:2 8-bit BT.709.
- YCbCr709_8_CbYCr: YCbCr 4:4:4 8-bit BT.709.
- YCbCr8: YCbCr 4:4:4 8-bit.
- YCbCr8_CbYCr: YCbCr 4:4:4 8-bit.
- YUV411_8_UYYVYY: YUV 4:1:1 8-bit.
- YUV422_8: YUV 4:2:2 8-bit.
- YUV422_8_UYVY: YUV 4:2:2 8-bit.
- YUV422Packed: YUV422Packed.
- YUV8_UYV: YUV 4:4:4 8-bit.

PixelFormatNamespace

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → ImageFormatControl	Enumeration	Imposed: RO

Short Description

Namespace of the pixel format.

Enumeration Values

• Unknown: Unknown.

GEV: GEV.IIDC: IIDC.

• PFNC_16BIT: PFNC 16-bit.

• PFNC_32BIT: PFNC 32-bit.

PixelSize

Feature Info

Module	Category Path	Туре	Access
Data Stream	$Root \to ImageFormatControl$	IntReg	RO

Register Port: StreamPort

Short Description

Pixel size in bits.

PixelComponentCount

Feature Info

Module	Category Path	Туре	Access
Data Stream	$Root \to ImageFormatControl$	IntReg	RO

Register Port: StreamPort

Short Description

Number of components per pixel.

Width

Feature Info

Module	Category Path	Туре	Access
Data Stream	$Root \to ImageFormatControl$	Integer	Imposed: RO

Short Description

Width of the image.

Height

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → ImageFormatControl	Integer	Imposed: RO

Short Description

Height of the image.

ImageFormatSource

Feature Info

Module	Category Path	Type	Access
Data Stream	$Root \to ImageFormatControl$	Enumeration	RW

Short Description

Source of remote device image format.

- RemoteDevice: Remote device (PixelFormat, Width, Height).
- DataStream: Data stream (RemotePixelFormat, RemoteWidth, RemoteHeight).

RemotePixelFormat

Feature Info

Module	Category Path	Type	Access
Data Stream	$Root \to ImageFormatControl$	Enumeration	RW

Short Description

Pixel format of the remote device image.

- BayerBG10pmsb: BayerBG10pmsb.
- BayerBG12pmsb: BayerBG12pmsb.
- BayerBG14pmsb: BayerBG14pmsb.
- BayerGB10pmsb: BayerGB10pmsb.
- BayerGB12pmsb: BayerGB12pmsb.
- BayerGB14pmsb: BayerGB14pmsb.
- BayerGR10pmsb: BayerGR10pmsb.
- BayerGR12pmsb: BayerGR12pmsb.
- BayerGR14pmsb: BayerGR14pmsb.
- BayerRG10pmsb: BayerRG10pmsb.
- BayerRG12pmsb: BayerRG12pmsb.
- BayerRG14pmsb: BayerRG14pmsb.
- Mono10pmsb: Mono10pmsb.
- Mono12pmsb: Mono12pmsb.
- Mono14pmsb: Mono14pmsb.
- RGB10pmsb: RGB10pmsb.
- RGB12pmsb: RGB12pmsb.
- RGB14pmsb: RGB14pmsb.
- RGBa10pmsb: RGBa10pmsb.
- RGBa12pmsb: RGBa12pmsb.
- RGBa14pmsb: RGBa14pmsb.
- YCbCr601_10pmsb: YCbCr601_10pmsb.
- YCbCr601_12pmsb: YCbCr601_12pmsb.
- YCbCr601_14pmsb: YCbCr601_14pmsb.

- YCbCr601_16: YCbCr601_16.
- YCbCr601_411_10pmsb: YCbCr601_411_10pmsb.
- YCbCr601_411_12pmsb: YCbCr601_411_12pmsb.
- YCbCr601_411_14pmsb: YCbCr601_411_14pmsb.
- YCbCr601_411_16: YCbCr601_411_16.
- YCbCr601_411_8: YCbCr601_411_8.
- YCbCr601_422_10pmsb: YCbCr601_422_10pmsb.
- YCbCr601_422_12pmsb: YCbCr601_422_12pmsb.
- YCbCr601_422_14pmsb: YCbCr601_422_14pmsb.
- YCbCr601_422_16: YCbCr601_422_16.
- YCbCr601_8: YCbCr601_8.
- YCbCr709_10pmsb: YCbCr709_10pmsb.
- YCbCr709_12pmsb: YCbCr709_12pmsb.
- YCbCr709_14pmsb: YCbCr709_14pmsb.
- YCbCr709_16: YCbCr709_16.
- YCbCr709_411_10pmsb: YCbCr709_411_10pmsb.
- YCbCr709_411_12pmsb: YCbCr709_411_12pmsb.
- YCbCr709_411_14pmsb: YCbCr709_411_14pmsb.
- YCbCr709_411_16: YCbCr709_411_16.
- YCbCr709_411_8: YCbCr709_411_8.
- YCbCr709_422_10pmsb: YCbCr709_422_10pmsb.
- YCbCr709_422_12pmsb: YCbCr709_422_12pmsb.
- YCbCr709_422_14pmsb: YCbCr709_422_14pmsb.
- YCbCr709_422_16: YCbCr709_422_16.
- YCbCr709_8: YCbCr709_8.
- YUV10pmsb: YUV10pmsb.
- YUV12pmsb: YUV12pmsb.
- YUV14pmsb: YUV14pmsb.
- YUV16: YUV16.
- YUV411_10pmsb: YUV411_10pmsb.
- YUV411_12pmsb: YUV411_12pmsb.
- YUV411_14pmsb: YUV411_14pmsb.
- YUV411_16: YUV411_16.
- YUV411_8: YUV411_8.
- YUV422_10pmsb: YUV422_10pmsb.
- YUV422_12pmsb: YUV422_12pmsb.

- YUV422_14pmsb: YUV422_14pmsb.
- YUV422_16: YUV422_16.
- YUV8: YUV8.
- B10: Blue 10-bit.
- B12: Blue 12-bit.
- B16: Blue 16-bit.
- B8: Blue 8-bit.
- BayerBG10: Bayer Blue-Green 10-bit unpacked.
- BayerBG10p: Bayer Blue-Green 10-bit packed.
- BayerBG10Packed: Bayer Blue-Green 10-bit packed.
- BayerBG12: Bayer Blue-Green 12-bit unpacked.
- BayerBG12p: Bayer Blue-Green 12-bit packed.
- BayerBG12Packed: Bayer Blue-Green 12-bit packed.
- BayerBG14: Bayer Blue-Green 14-bit.
- BayerBG14p: Bayer Blue-Green 14-bit packed.
- BayerBG16: Bayer Blue-Green 16-bit.
- BayerBG4p: Bayer Blue-Green 4-bit packed.
- BayerBG8: Bayer Blue-Green 8-bit.
- BayerGB10: Bayer Green-Blue 10-bit unpacked.
- BayerGB10p: Bayer Green-Blue 10-bit packed.
- BayerGB10Packed: Bayer Green-Blue 10-bit packed.
- BayerGB12: Bayer Green-Blue 12-bit unpacked.
- BayerGB12p: Bayer Green-Blue 12-bit packed.
- BayerGB12Packed: Bayer Green-Blue 12-bit packed.
- BayerGB14: Bayer Green-Blue 14-bit.
- BayerGB14p: Bayer Green-Blue 14-bit packed.
- BayerGB16: Bayer Green-Blue 16-bit.
- BayerGB4p: Bayer Green-Blue 4-bit packed.
- BayerGB8: Bayer Green-Blue 8-bit.
- BayerGR10: Bayer Green-Red 10-bit unpacked.
- BayerGR10p: Bayer Green-Red 10-bit packed.
- BayerGR10Packed: Bayer Green-Red 10-bit packed.
- BayerGR12: Bayer Green-Red 12-bit unpacked.
- BayerGR12p: Bayer Green-Red 12-bit packed.
- BayerGR12Packed: Bayer Green-Red 12-bit packed.
- BayerGR14: Bayer Green-Red 14-bit.

- BayerGR14p: Bayer Green-Red 14-bit packed.
- BayerGR16: Bayer Green-Red 16-bit.
- BayerGR4p: Bayer Green-Red 4-bit packed.
- BayerGR8: Bayer Green-Red 8-bit.
- BayerRG10: Bayer Red-Green 10-bit unpacked.
- BayerRG10p: Bayer Red-Green 10-bit packed.
- BayerRG10Packed: Bayer Red-Green 10-bit packed.
- BayerRG12: Bayer Red-Green 12-bit unpacked.
- BayerRG12p: Bayer Red-Green 12-bit packed.
- BayerRG12Packed: Bayer Red-Green 12-bit packed.
- BayerRG14: Bayer Red-Green 14-bit.
- BayerRG14p: Bayer Red-Green 14-bit packed.
- BayerRG16: Bayer Red-Green 16-bit.
- BayerRG4p: Bayer Red-Green 4-bit packed.
- BayerRG8: Bayer Red-Green 8-bit.
- BGR10: Blue-Green-Red 10-bit unpacked.
- BGR10p: Blue-Green-Red 10-bit packed.
- BGR12: Blue-Green-Red 12-bit unpacked.
- BGR12p: Blue-Green-Red 12-bit packed.
- BGR14: Blue-Green-Red 14-bit unpacked.
- BGR16: Blue-Green-Red 16-bit.
- BGR565p: Blue-Green-Red 5/6/5-bit packed.
- BGR8: Blue-Green-Red 8-bit.
- BGR8a32: BGR8a32.
- BGRa10: Blue-Green-Red-alpha 10-bit unpacked.
- BGRa10p: Blue-Green-Red-alpha 10-bit packed.
- BGRa12: Blue-Green-Red-alpha 12-bit unpacked.
- BGRa12p: Blue-Green-Red-alpha 12-bit packed.
- BGRa14: Blue-Green-Red-alpha 14-bit unpacked.
- BGRa16: Blue-Green-Red-alpha 16-bit.
- BGRa8: Blue-Green-Red-alpha 8-bit.
- BiColorBGRG10: Bi-color Blue/Green Red/Green 10-bit unpacked.
- BiColorBGRG10p: Bi-color Blue/Green Red/Green 10-bit packed.
- BiColorBGRG12: Bi-color Blue/Green Red/Green 12-bit unpacked.
- BiColorBGRG12p: Bi-color Blue/Green Red/Green 12-bit packed.
- BiColorBGRG8: Bi-color Blue/Green Red/Green 8-bit.

- BiColorRGBG10: Bi-color Red/Green Blue/Green 10-bit unpacked.
- BiColorRGBG10p: Bi-color Red/Green Blue/Green 10-bit packed.
- BiColorRGBG12: Bi-color Red/Green Blue/Green 12-bit unpacked.
- BiColorRGBG12p: Bi-color Red/Green Blue/Green 12-bit packed.
- BiColorRGBG8: Bi-color Red/Green Blue/Green 8-bit.
- Confidence1: Confidence 1-bit unpacked.
- Confidence16: Confidence 16-bit.
- Confidence1p: Confidence 1-bit packed.
- Confidence32f: Confidence 32-bit floating point.
- Confidence8: Confidence 8-bit.
- Coord3D_A10p: 3D coordinate A 10-bit packed.
- Coord3D_A12p: 3D coordinate A 12-bit packed.
- Coord3D_A16: 3D coordinate A 16-bit.
- Coord3D_A32f: 3D coordinate A 32-bit floating point.
- Coord3D_A8: 3D coordinate A 8-bit.
- Coord3D_ABC10p: 3D coordinate A-B-C 10-bit packed.
- Coord3D_ABC10p_Planar: 3D coordinate A-B-C 10-bit packed planar.
- Coord3D_ABC12p: 3D coordinate A-B-C 12-bit packed.
- Coord3D_ABC12p_Planar: 3D coordinate A-B-C 12-bit packed planar.
- Coord3D_ABC16: 3D coordinate A-B-C 16-bit.
- Coord3D_ABC16_Planar: 3D coordinate A-B-C 16-bit planar.
- Coord3D_ABC32f: 3D coordinate A-B-C 32-bit floating point.
- Coord3D_ABC32f_Planar: 3D coordinate A-B-C 32-bit floating point planar.
- Coord3D_ABC8: 3D coordinate A-B-C 8-bit.
- Coord3D_ABC8_Planar: 3D coordinate A-B-C 8-bit planar.
- Coord3D_AC10p: 3D coordinate A-C 10-bit packed.
- Coord3D_AC10p_Planar: 3D coordinate A-C 10-bit packed planar.
- Coord3D_AC12p: 3D coordinate A-C 12-bit packed.
- Coord3D_AC12p_Planar: 3D coordinate A-C 12-bit packed planar.
- Coord3D_AC16: 3D coordinate A-C 16-bit.
- Coord3D_AC16_Planar: 3D coordinate A-C 16-bit planar.
- Coord3D_AC32f: 3D coordinate A-C 32-bit floating point.
- Coord3D_AC32f_Planar: 3D coordinate A-C 32-bit floating point planar.
- Coord3D_AC8: 3D coordinate A-C 8-bit.
- Coord3D_AC8_Planar: 3D coordinate A-C 8-bit planar.
- Coord3D_B10p: 3D coordinate B 10-bit packed.

- Coord3D_B12p: 3D coordinate B 12-bit packed.
- Coord3D_B16: 3D coordinate B 16-bit.
- Coord3D_B32f: 3D coordinate B 32-bit floating point.
- Coord3D_B8: 3D coordinate B 8-bit.
- Coord3D_C10p: 3D coordinate C 10-bit packed.
- Coord3D_C12p: 3D coordinate C 12-bit packed.
- Coord3D_C16: 3D coordinate C 16-bit.
- Coord3D_C32f: 3D coordinate C 32-bit floating point.
- Coord3D_C8: 3D coordinate C 8-bit.
- CustomBayerBG14: CustomBayerBG14.
- CustomBayerGB14: CustomBayerGB14.
- CustomBayerGR14: CustomBayerGR14.
- CustomBayerRG14: CustomBayerRG14.
- CustomJFIF: CustomJFIF.
- G10: Green 10-bit.
- G12: Green 12-bit.
- G16: Green 16-bit.
- G8: Green 8-bit.
- Mono10: Monochrome 10-bit unpacked.
- Mono10p: Monochrome 10-bit packed.
- Mono10Packed: Monochrome 10-bit packed.
- Mono12: Monochrome 12-bit unpacked.
- Mono12p: Monochrome 12-bit packed.
- Mono12Packed: Monochrome 12-bit packed.
- Mono14: Monochrome 14-bit unpacked.
- Mono14p: Monochrome 14-bit packed.
- Mono16: Monochrome 16-bit.
- Mono1p: Monochrome 1-bit packed.
- Mono2p: Monochrome 2-bit packed.
- Mono32: Monochrome 32-bit.
- Mono4p: Monochrome 4-bit packed.
- Mono8: Monochrome 8-bit.
- Mono8s: Monochrome 8-bit signed.
- R10: Red 10-bit.
- R12: Red 12-bit.
- R16: Red 16-bit.

- R8: Red 8-bit.
- RGB10: Red-Green-Blue 10-bit unpacked.
- RGB10_Planar: Red-Green-Blue 10-bit unpacked planar.
- RGB10p: Red-Green-Blue 10-bit packed.
- RGB10p32: Red-Green-Blue 10-bit packed into 32-bit.
- RGB10V1Packed: Red-Green-Blue 10-bit packed variant 1.
- RGB12: Red-Green-Blue 12-bit unpacked.
- RGB12_Planar: Red-Green-Blue 12-bit unpacked planar.
- RGB12p: Red-Green-Blue 12-bit packed.
- RGB12V1Packed: Red-Green-Blue 12-bit packed variant 1.
- RGB14: Red-Green-Blue 14-bit unpacked.
- RGB16: Red-Green-Blue 16-bit.
- RGB16_Planar: Red-Green-Blue 16-bit planar.
- RGB565p: Red-Green-Blue 5/6/5-bit packed.
- RGB8: Red-Green-Blue 8-bit.
- RGB8_Planar: Red-Green-Blue 8-bit planar.
- RGB8a32: RGB8a32.
- RGBa10: Red-Green-Blue-alpha 10-bit unpacked.
- RGBa10p: Red-Green-Blue-alpha 10-bit packed.
- RGBa12: Red-Green-Blue-alpha 12-bit unpacked.
- RGBa12p: Red-Green-Blue-alpha 12-bit packed.
- RGBa14: Red-Green-Blue-alpha 14-bit unpacked.
- RGBa16: Red-Green-Blue-alpha 16-bit.
- RGBa8: Red-Green-Blue-alpha 8-bit.
- SCF1WBWG10: Sparse Color Filter #1 White-Blue-White-Green 10-bit unpacked.
- SCF1WBWG10p: Sparse Color Filter #1 White-Blue-White-Green 10-bit packed.
- SCF1WBWG12: Sparse Color Filter #1 White-Blue-White-Green 12-bit unpacked.
- SCF1WBWG12p: Sparse Color Filter #1 White-Blue-White-Green 12-bit packed.
- SCF1WBWG14: Sparse Color Filter #1 White-Blue-White-Green 14-bit unpacked.
- SCF1WBWG16: Sparse Color Filter #1 White-Blue-White-Green 16-bit unpacked.
- SCF1WBWG8: Sparse Color Filter #1 White-Blue-White-Green 8-bit.
- SCF1WGWB10: Sparse Color Filter #1 White-Green-White-Blue 10-bit unpacked.
- SCF1WGWB10p: Sparse Color Filter #1 White-Green-White-Blue 10-bit packed.
- SCF1WGWB12: Sparse Color Filter #1 White-Green-White-Blue 12-bit unpacked.
- SCF1WGWB12p: Sparse Color Filter #1 White-Green-White-Blue 12-bit packed.
- SCF1WGWB14: Sparse Color Filter #1 White-Green-White-Blue 14-bit unpacked.

- SCF1WGWB16: Sparse Color Filter #1 White-Green-White-Blue 16-bit.
- SCF1WGWB8: Sparse Color Filter #1 White-Green-White-Blue 8-bit.
- SCF1WGWR10: Sparse Color Filter #1 White-Green-White-Red 10-bit unpacked.
- SCF1WGWR10p: Sparse Color Filter #1 White-Green-White-Red 10-bit packed.
- SCF1WGWR12: Sparse Color Filter #1 White-Green-White-Red 12-bit unpacked.
- SCF1WGWR12p: Sparse Color Filter #1 White-Green-White-Red 12-bit packed.
- SCF1WGWR14: Sparse Color Filter #1 White-Green-White-Red 14-bit unpacked.
- SCF1WGWR16: Sparse Color Filter #1 White-Green-White-Red 16-bit.
- SCF1WGWR8: Sparse Color Filter #1 White-Green-White-Red 8-bit.
- SCF1WRWG10: Sparse Color Filter #1 White-Red-White-Green 10-bit unpacked.
- SCF1WRWG10p: Sparse Color Filter #1 White-Red-White-Green 10-bit packed.
- SCF1WRWG12: Sparse Color Filter #1 White-Red-White-Green 12-bit unpacked.
- SCF1WRWG12p: Sparse Color Filter #1 White-Red-White-Green 12-bit packed.
- SCF1WRWG14: Sparse Color Filter #1 White-Red-White-Green 14-bit unpacked.
- SCF1WRWG16: Sparse Color Filter #1 White-Red-White-Green 16-bit.
- SCF1WRWG8: Sparse Color Filter #1 White-Red-White-Green 8-bit.
- YCbCr10_CbYCr: YCbCr 4:4:4 10-bit unpacked.
- YCbCr10p_CbYCr: YCbCr 4:4:4 10-bit packed.
- YCbCr12_CbYCr: YCbCr 4:4:4 12-bit unpacked.
- YCbCr12p_CbYCr: YCbCr 4:4:4 12-bit packed.
- YCbCr2020_10_CbYCr: YCbCr 4:4:4 10-bit unpacked BT.2020.
- YCbCr2020_10p_CbYCr: YCbCr 4:4:4 10-bit packed BT.2020.
- YCbCr2020_12_CbYCr: YCbCr 4:4:4 12-bit unpacked BT.2020.
- YCbCr2020_12p_CbYCr: YCbCr 4:4:4 12-bit packed BT.2020.
- YCbCr2020_411_8_CbYYCrYY: YCbCr 4:1:1 8-bit BT.2020.
- YCbCr2020_422_10: YCbCr 4:2:2 10-bit unpacked BT.2020.
- YCbCr2020_422_10_CbYCrY: YCbCr 4:2:2 10-bit unpacked BT.2020.
- YCbCr2020_422_10p: YCbCr 4:2:2 10-bit packed BT.2020.
- YCbCr2020_422_10p_CbYCrY: YCbCr 4:2:2 10-bit packed BT.2020.
- YCbCr2020_422_12: YCbCr 4:2:2 12-bit unpacked BT.2020.
- YCbCr2020_422_12_CbYCrY: YCbCr 4:2:2 12-bit unpacked BT.2020.
- YCbCr2020_422_12p: YCbCr 4:2:2 12-bit packed BT.2020.
- YCbCr2020_422_12p_CbYCrY: YCbCr 4:2:2 12-bit packed BT.2020.
- YCbCr2020_422_8: YCbCr 4:2:2 8-bit BT.2020.
- YCbCr2020_422_8_CbYCrY: YCbCr 4:2:2 8-bit BT.2020.
- YCbCr2020_8_CbYCr: YCbCr 4:4:4 8-bit BT.2020.

- YCbCr411_8: YCbCr 4:1:1 8-bit.
- YCbCr411_8_CbYYCrYY: YCbCr 4:1:1 8-bit.
- YCbCr420_8_YY_CbCr_Semiplanar: YCbCr 4:2:0 8-bit YY/CbCr Semiplanar.
- YCbCr420_8_YY_CrCb_Semiplanar: YCbCr 4:2:0 8-bit YY/CrCb Semiplanar.
- YCbCr422_10: YCbCr 4:2:2 10-bit unpacked.
- YCbCr422_10_CbYCrY: YCbCr 4:2:2 10-bit unpacked.
- YCbCr422_10p: YCbCr 4:2:2 10-bit packed.
- YCbCr422_10p_CbYCrY: YCbCr 4:2:2 10-bit packed.
- YCbCr422_12: YCbCr 4:2:2 12-bit unpacked.
- YCbCr422_12_CbYCrY: YCbCr 4:2:2 12-bit unpacked.
- YCbCr422_12p: YCbCr 4:2:2 12-bit packed.
- YCbCr422_12p_CbYCrY: YCbCr 4:2:2 12-bit packed.
- YCbCr422_8: YCbCr 4:2:2 8-bit.
- YCbCr422_8_CbYCrY: YCbCr 4:2:2 8-bit.
- YCbCr422_8_YY_CbCr_Semiplanar: YCbCr 4:2:2 8-bit YY/CbCr Semiplanar.
- YCbCr422_8_YY_CrCb_Semiplanar: YCbCr 4:2:2 8-bit YY/CrCb Semiplanar.
- YCbCr601_10_CbYCr: YCbCr 4:4:4 10-bit unpacked BT.601.
- YCbCr601_10p_CbYCr: YCbCr 4:4:4 10-bit packed BT.601.
- YCbCr601_12_CbYCr: YCbCr 4:4:4 12-bit unpacked BT.601.
- YCbCr601_12p_CbYCr: YCbCr 4:4:4 12-bit packed BT.601.
- YCbCr601_411_8_CbYYCrYY: YCbCr 4:1:1 8-bit BT.601.
- YCbCr601_422_10: YCbCr 4:2:2 10-bit unpacked BT.601.
- YCbCr601_422_10_CbYCrY: YCbCr 4:2:2 10-bit unpacked BT.601.
- YCbCr601_422_10p: YCbCr 4:2:2 10-bit packed BT.601.
- YCbCr601_422_10p_CbYCrY: YCbCr 4:2:2 10-bit packed BT.601.
- YCbCr601_422_12: YCbCr 4:2:2 12-bit unpacked BT.601.
- YCbCr601_422_12_CbYCrY: YCbCr 4:2:2 12-bit unpacked BT.601.
- YCbCr601_422_12p: YCbCr 4:2:2 12-bit packed BT.601.
- YCbCr601_422_12p_CbYCrY: YCbCr 4:2:2 12-bit packed BT.601.
- YCbCr601_422_8: YCbCr 4:2:2 8-bit BT.601.
- YCbCr601_422_8_CbYCrY: YCbCr 4:2:2 8-bit BT.601.
- YCbCr601_8_CbYCr: YCbCr 4:4:4 8-bit BT.601.
- YCbCr709_10_CbYCr: YCbCr 4:4:4 10-bit unpacked BT.709.
- YCbCr709_10p_CbYCr: YCbCr 4:4:4 10-bit packed BT.709.
- YCbCr709_12_CbYCr: YCbCr 4:4:4 12-bit unpacked BT.709.
- YCbCr709_12p_CbYCr: YCbCr 4:4:4 12-bit packed BT.709.

- YCbCr709_411_8_CbYYCrYY: YCbCr 4:1:1 8-bit BT.709.
- YCbCr709_422_10: YCbCr 4:2:2 10-bit unpacked BT.709.
- YCbCr709_422_10_CbYCrY: YCbCr 4:2:2 10-bit unpacked BT.709.
- YCbCr709_422_10p: YCbCr 4:2:2 10-bit packed BT.709.
- YCbCr709_422_10p_CbYCrY: YCbCr 4:2:2 10-bit packed BT.709.
- YCbCr709_422_12: YCbCr 4:2:2 12-bit unpacked BT.709.
- YCbCr709_422_12_CbYCrY: YCbCr 4:2:2 12-bit unpacked BT.709.
- YCbCr709_422_12p: YCbCr 4:2:2 12-bit packed BT.709.
- YCbCr709_422_12p_CbYCrY: YCbCr 4:2:2 12-bit packed BT.709.
- YCbCr709_422_8: YCbCr 4:2:2 8-bit BT.709.
- YCbCr709_422_8_CbYCrY: YCbCr 4:2:2 8-bit BT.709.
- YCbCr709_8_CbYCr: YCbCr 4:4:4 8-bit BT.709.
- YCbCr8: YCbCr 4:4:4 8-bit.
- YCbCr8_CbYCr: YCbCr 4:4:4 8-bit.
- YUV411_8_UYYVYY: YUV 4:1:1 8-bit.
- YUV422_8: YUV 4:2:2 8-bit.
- YUV422_8_UYVY: YUV 4:2:2 8-bit.
- YUV422Packed: YUV422Packed.
- YUV8_UYV: YUV 4:4:4 8-bit.

RemoteWidth

Feature Info

Module	Category Path	Туре	Access
Data Stream	$Root \to ImageFormatControl$	Integer	RW

Value Info

Minimum value: 1

Short Description

Width of the remote device image.

RemoteHeight

Feature Info

Module	Category Path	Туре	Access
Data Stream	$Root \to ImageFormatControl$	Integer	RW

Value Info

Minimum value: 1

Short Description

Height of the remote device image.

4.4. TransportLayerControl Category

PayloadSize	146
ControlRemoteDevice	147

PayloadSize

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → TransportLayerControl	Integer	Imposed: RO

Short Description

Expected size of buffers for the data stream.

ControlRemoteDevice

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → TransportLayerControl	Boolean	RW

Short Description

Defines whether or not to start and stop the remote device by automatically executing AcquisitionStart and AcquisitionStop commands.

4.5. BufferHandlingControl Category

StreamAnnouncedBufferCount	149
StreamBufferHandlingMode	150
StreamAnnounceBufferMinimum	151
StreamAcquisitionModeSelector	152
BufferAllocationAlignmentControl	153
BufferAllocationAlignment	154
BufferInfoSource	155
BufferInfoWidth	156
BufferInfoHeight	157
BufferInfoPixelFormat	158
BufferHeight	168
DeliverIncompleteImages	169

StreamAnnouncedBufferCount

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → BufferHandlingControl	Integer	Imposed: RO

Short Description

Number of announced buffers on the stream.

StreamBufferHandlingMode

Feature Info

Module	Category Path	Type	Access
Data Stream	Root → BufferHandlingControl	Enumeration	RW

Short Description

Available buffer handling modes of this Stream.

Enumeration Values

• Default: Default Buffer Handling Mode.

StreamAnnounceBufferMinimum

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → BufferHandlingControl	Integer	Imposed: RO

Short Description

Minimal number of buffers to announce to enable selected buffer handling mode.

StreamAcquisitionModeSelector

Feature Info

Module	Category Path	Type	Access
Data Stream	Root → BufferHandlingControl	Enumeration	RW

Short Description

Available buffer handling modes of this Stream. Deprecated.

Enumeration Values

• Default: Default Buffer Handling Mode.

Buffer Allocation Alignment Control

Feature Info

Module	Category Path	Type	Access
Data Stream	Root → BufferHandlingControl	Enumeration	RW

Short Description

Buffer Allocation Alignment Control.

Enumeration Values

- Disable: Disable aligned buffer allocation.
- Enable: Enable aligned buffer allocation.

${\bf Buffer Allocation Alignment}$

Feature Info

Module	Category Path	Туре	Access
Data Stream	$Root \to BufferHandlingControl$	Integer	RW

Value Info

Minimum value: 1

Short Description

Alignment of buffers allocated by DSAllocAndAnnounceBuffer, should be a power of 2.

BufferInfoSource

Feature Info

Module	Category Path	Type	Access
Data Stream	Root → BufferHandlingControl	Enumeration	RW

Short Description

Source of buffer info.

Enumeration Values

- ImageHeader: Remote device image header (PixelFormat, Width, Height).
- DataStream: Data stream (BufferInfoPixelFormat, BufferInfoWidth, BufferInfoHeight).

BufferInfoWidth

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → BufferHandlingControl	Integer	RW

Value Info

Minimum value: 1

Short Description

Imposed width.

BufferInfoHeight

Feature Info

Module	Category Path	Type	Access
Data Stream	$Root \to BufferHandlingControl$	Integer	RW

Value Info

Minimum value: 0

Short Description

Imposed height.

BufferInfoPixelFormat

Feature Info

Module	Category Path	Type	Access
Data Stream	Root → BufferHandlingControl	Enumeration	RW

Short Description

Imposed pixel format.

Enumeration Values

- BayerBG10pmsb: BayerBG10pmsb.
- BayerBG12pmsb: BayerBG12pmsb.
- BayerBG14pmsb: BayerBG14pmsb.
- BayerGB10pmsb: BayerGB10pmsb.
- BayerGB12pmsb: BayerGB12pmsb.
- BayerGB14pmsb: BayerGB14pmsb.
- BayerGR10pmsb: BayerGR10pmsb.
- BayerGR12pmsb: BayerGR12pmsb.
- BayerGR14pmsb: BayerGR14pmsb.
- BayerRG10pmsb: BayerRG10pmsb.
- BayerRG12pmsb: BayerRG12pmsb.
- BayerRG14pmsb: BayerRG14pmsb.
- Mono10pmsb: Mono10pmsb.
- Mono12pmsb: Mono12pmsb.
- Mono14pmsb: Mono14pmsb.
- RGB10pmsb: RGB10pmsb.
- RGB12pmsb: RGB12pmsb.
- RGB14pmsb: RGB14pmsb.
- RGBa10pmsb: RGBa10pmsb.
- RGBa12pmsb: RGBa12pmsb.
- RGBa14pmsb: RGBa14pmsb.
- YCbCr601_10pmsb: YCbCr601_10pmsb.
- YCbCr601_12pmsb: YCbCr601_12pmsb.
- YCbCr601_14pmsb: YCbCr601_14pmsb.

- YCbCr601_16: YCbCr601_16.
- YCbCr601_411_10pmsb: YCbCr601_411_10pmsb.
- YCbCr601_411_12pmsb: YCbCr601_411_12pmsb.
- YCbCr601_411_14pmsb: YCbCr601_411_14pmsb.
- YCbCr601_411_16: YCbCr601_411_16.
- YCbCr601_411_8: YCbCr601_411_8.
- YCbCr601_422_10pmsb: YCbCr601_422_10pmsb.
- YCbCr601_422_12pmsb: YCbCr601_422_12pmsb.
- YCbCr601_422_14pmsb: YCbCr601_422_14pmsb.
- YCbCr601_422_16: YCbCr601_422_16.
- YCbCr601_8: YCbCr601_8.
- YCbCr709_10pmsb: YCbCr709_10pmsb.
- YCbCr709_12pmsb: YCbCr709_12pmsb.
- YCbCr709_14pmsb: YCbCr709_14pmsb.
- YCbCr709_16: YCbCr709_16.
- YCbCr709_411_10pmsb: YCbCr709_411_10pmsb.
- YCbCr709_411_12pmsb: YCbCr709_411_12pmsb.
- YCbCr709_411_14pmsb: YCbCr709_411_14pmsb.
- YCbCr709_411_16: YCbCr709_411_16.
- YCbCr709_411_8: YCbCr709_411_8.
- YCbCr709_422_10pmsb: YCbCr709_422_10pmsb.
- YCbCr709_422_12pmsb: YCbCr709_422_12pmsb.
- YCbCr709_422_14pmsb: YCbCr709_422_14pmsb.
- YCbCr709_422_16: YCbCr709_422_16.
- YCbCr709_8: YCbCr709_8.
- YUV10pmsb: YUV10pmsb.
- YUV12pmsb: YUV12pmsb.
- YUV14pmsb: YUV14pmsb.
- YUV16: YUV16.
- YUV411_10pmsb: YUV411_10pmsb.
- YUV411_12pmsb: YUV411_12pmsb.
- YUV411_14pmsb: YUV411_14pmsb.
- YUV411_16: YUV411_16.
- YUV411_8: YUV411_8.
- YUV422_10pmsb: YUV422_10pmsb.
- YUV422_12pmsb: YUV422_12pmsb.

- YUV422_14pmsb: YUV422_14pmsb.
- YUV422_16: YUV422_16.
- YUV8: YUV8.
- B10: Blue 10-bit.
- B12: Blue 12-bit.
- B16: Blue 16-bit.
- B8: Blue 8-bit.
- BayerBG10: Bayer Blue-Green 10-bit unpacked.
- BayerBG10p: Bayer Blue-Green 10-bit packed.
- BayerBG10Packed: Bayer Blue-Green 10-bit packed.
- BayerBG12: Bayer Blue-Green 12-bit unpacked.
- BayerBG12p: Bayer Blue-Green 12-bit packed.
- BayerBG12Packed: Bayer Blue-Green 12-bit packed.
- BayerBG14: Bayer Blue-Green 14-bit.
- BayerBG14p: Bayer Blue-Green 14-bit packed.
- BayerBG16: Bayer Blue-Green 16-bit.
- BayerBG4p: Bayer Blue-Green 4-bit packed.
- BayerBG8: Bayer Blue-Green 8-bit.
- BayerGB10: Bayer Green-Blue 10-bit unpacked.
- BayerGB10p: Bayer Green-Blue 10-bit packed.
- BayerGB10Packed: Bayer Green-Blue 10-bit packed.
- BayerGB12: Bayer Green-Blue 12-bit unpacked.
- BayerGB12p: Bayer Green-Blue 12-bit packed.
- BayerGB12Packed: Bayer Green-Blue 12-bit packed.
- BayerGB14: Bayer Green-Blue 14-bit.
- BayerGB14p: Bayer Green-Blue 14-bit packed.
- BayerGB16: Bayer Green-Blue 16-bit.
- BayerGB4p: Bayer Green-Blue 4-bit packed.
- BayerGB8: Bayer Green-Blue 8-bit.
- BayerGR10: Bayer Green-Red 10-bit unpacked.
- BayerGR10p: Bayer Green-Red 10-bit packed.
- BayerGR10Packed: Bayer Green-Red 10-bit packed.
- BayerGR12: Bayer Green-Red 12-bit unpacked.
- BayerGR12p: Bayer Green-Red 12-bit packed.
- BayerGR12Packed: Bayer Green-Red 12-bit packed.
- BayerGR14: Bayer Green-Red 14-bit.

- BayerGR14p: Bayer Green-Red 14-bit packed.
- BayerGR16: Bayer Green-Red 16-bit.
- BayerGR4p: Bayer Green-Red 4-bit packed.
- BayerGR8: Bayer Green-Red 8-bit.
- BayerRG10: Bayer Red-Green 10-bit unpacked.
- BayerRG10p: Bayer Red-Green 10-bit packed.
- BayerRG10Packed: Bayer Red-Green 10-bit packed.
- BayerRG12: Bayer Red-Green 12-bit unpacked.
- BayerRG12p: Bayer Red-Green 12-bit packed.
- BayerRG12Packed: Bayer Red-Green 12-bit packed.
- BayerRG14: Bayer Red-Green 14-bit.
- BayerRG14p: Bayer Red-Green 14-bit packed.
- BayerRG16: Bayer Red-Green 16-bit.
- BayerRG4p: Bayer Red-Green 4-bit packed.
- BayerRG8: Bayer Red-Green 8-bit.
- BGR10: Blue-Green-Red 10-bit unpacked.
- BGR10p: Blue-Green-Red 10-bit packed.
- BGR12: Blue-Green-Red 12-bit unpacked.
- BGR12p: Blue-Green-Red 12-bit packed.
- BGR14: Blue-Green-Red 14-bit unpacked.
- BGR16: Blue-Green-Red 16-bit.
- BGR565p: Blue-Green-Red 5/6/5-bit packed.
- BGR8: Blue-Green-Red 8-bit.
- BGR8a32: BGR8a32.
- BGRa10: Blue-Green-Red-alpha 10-bit unpacked.
- BGRa10p: Blue-Green-Red-alpha 10-bit packed.
- BGRa12: Blue-Green-Red-alpha 12-bit unpacked.
- BGRa12p: Blue-Green-Red-alpha 12-bit packed.
- BGRa14: Blue-Green-Red-alpha 14-bit unpacked.
- BGRa16: Blue-Green-Red-alpha 16-bit.
- BGRa8: Blue-Green-Red-alpha 8-bit.
- BiColorBGRG10: Bi-color Blue/Green Red/Green 10-bit unpacked.
- BiColorBGRG10p: Bi-color Blue/Green Red/Green 10-bit packed.
- BiColorBGRG12: Bi-color Blue/Green Red/Green 12-bit unpacked.
- BiColorBGRG12p: Bi-color Blue/Green Red/Green 12-bit packed.
- BiColorBGRG8: Bi-color Blue/Green Red/Green 8-bit.

- BiColorRGBG10: Bi-color Red/Green Blue/Green 10-bit unpacked.
- BiColorRGBG10p: Bi-color Red/Green Blue/Green 10-bit packed.
- BiColorRGBG12: Bi-color Red/Green Blue/Green 12-bit unpacked.
- BiColorRGBG12p: Bi-color Red/Green Blue/Green 12-bit packed.
- BiColorRGBG8: Bi-color Red/Green Blue/Green 8-bit.
- Confidence1: Confidence 1-bit unpacked.
- Confidence16: Confidence 16-bit.
- Confidence1p: Confidence 1-bit packed.
- Confidence32f: Confidence 32-bit floating point.
- Confidence8: Confidence 8-bit.
- Coord3D_A10p: 3D coordinate A 10-bit packed.
- Coord3D_A12p: 3D coordinate A 12-bit packed.
- Coord3D_A16: 3D coordinate A 16-bit.
- Coord3D_A32f: 3D coordinate A 32-bit floating point.
- Coord3D_A8: 3D coordinate A 8-bit.
- Coord3D_ABC10p: 3D coordinate A-B-C 10-bit packed.
- Coord3D_ABC10p_Planar: 3D coordinate A-B-C 10-bit packed planar.
- Coord3D_ABC12p: 3D coordinate A-B-C 12-bit packed.
- Coord3D_ABC12p_Planar: 3D coordinate A-B-C 12-bit packed planar.
- Coord3D_ABC16: 3D coordinate A-B-C 16-bit.
- Coord3D_ABC16_Planar: 3D coordinate A-B-C 16-bit planar.
- Coord3D_ABC32f: 3D coordinate A-B-C 32-bit floating point.
- Coord3D_ABC32f_Planar: 3D coordinate A-B-C 32-bit floating point planar.
- Coord3D_ABC8: 3D coordinate A-B-C 8-bit.
- Coord3D_ABC8_Planar: 3D coordinate A-B-C 8-bit planar.
- Coord3D_AC10p: 3D coordinate A-C 10-bit packed.
- Coord3D_AC10p_Planar: 3D coordinate A-C 10-bit packed planar.
- Coord3D_AC12p: 3D coordinate A-C 12-bit packed.
- Coord3D_AC12p_Planar: 3D coordinate A-C 12-bit packed planar.
- Coord3D_AC16: 3D coordinate A-C 16-bit.
- Coord3D_AC16_Planar: 3D coordinate A-C 16-bit planar.
- Coord3D_AC32f: 3D coordinate A-C 32-bit floating point.
- Coord3D_AC32f_Planar: 3D coordinate A-C 32-bit floating point planar.
- Coord3D_AC8: 3D coordinate A-C 8-bit.
- Coord3D_AC8_Planar: 3D coordinate A-C 8-bit planar.
- Coord3D_B10p: 3D coordinate B 10-bit packed.

- Coord3D_B12p: 3D coordinate B 12-bit packed.
- Coord3D B16: 3D coordinate B 16-bit.
- Coord3D_B32f: 3D coordinate B 32-bit floating point.
- Coord3D_B8: 3D coordinate B 8-bit.
- Coord3D_C10p: 3D coordinate C 10-bit packed.
- Coord3D_C12p: 3D coordinate C 12-bit packed.
- Coord3D_C16: 3D coordinate C 16-bit.
- Coord3D_C32f: 3D coordinate C 32-bit floating point.
- Coord3D_C8: 3D coordinate C 8-bit.
- CustomBayerBG14: CustomBayerBG14.
- CustomBayerGB14: CustomBayerGB14.
- CustomBayerGR14: CustomBayerGR14.
- CustomBayerRG14: CustomBayerRG14.
- CustomJFIF: CustomJFIF.
- G10: Green 10-bit.
- G12: Green 12-bit.
- G16: Green 16-bit.
- G8: Green 8-bit.
- Mono10: Monochrome 10-bit unpacked.
- Mono10p: Monochrome 10-bit packed.
- Mono10Packed: Monochrome 10-bit packed.
- Mono12: Monochrome 12-bit unpacked.
- Mono12p: Monochrome 12-bit packed.
- Mono12Packed: Monochrome 12-bit packed.
- Mono14: Monochrome 14-bit unpacked.
- Mono14p: Monochrome 14-bit packed.
- Mono16: Monochrome 16-bit.
- Mono1p: Monochrome 1-bit packed.
- Mono2p: Monochrome 2-bit packed.
- Mono32: Monochrome 32-bit.
- Mono4p: Monochrome 4-bit packed.
- Mono8: Monochrome 8-bit.
- Mono8s: Monochrome 8-bit signed.
- R10: Red 10-bit.
- R12: Red 12-bit.
- R16: Red 16-bit.

- R8: Red 8-bit.
- RGB10: Red-Green-Blue 10-bit unpacked.
- RGB10_Planar: Red-Green-Blue 10-bit unpacked planar.
- RGB10p: Red-Green-Blue 10-bit packed.
- RGB10p32: Red-Green-Blue 10-bit packed into 32-bit.
- RGB10V1Packed: Red-Green-Blue 10-bit packed variant 1.
- RGB12: Red-Green-Blue 12-bit unpacked.
- RGB12_Planar: Red-Green-Blue 12-bit unpacked planar.
- RGB12p: Red-Green-Blue 12-bit packed.
- RGB12V1Packed: Red-Green-Blue 12-bit packed variant 1.
- RGB14: Red-Green-Blue 14-bit unpacked.
- RGB16: Red-Green-Blue 16-bit.
- RGB16_Planar: Red-Green-Blue 16-bit planar.
- RGB565p: Red-Green-Blue 5/6/5-bit packed.
- RGB8: Red-Green-Blue 8-bit.
- RGB8_Planar: Red-Green-Blue 8-bit planar.
- RGB8a32: RGB8a32.
- RGBa10: Red-Green-Blue-alpha 10-bit unpacked.
- RGBa10p: Red-Green-Blue-alpha 10-bit packed.
- RGBa12: Red-Green-Blue-alpha 12-bit unpacked.
- RGBa12p: Red-Green-Blue-alpha 12-bit packed.
- RGBa14: Red-Green-Blue-alpha 14-bit unpacked.
- RGBa16: Red-Green-Blue-alpha 16-bit.
- RGBa8: Red-Green-Blue-alpha 8-bit.
- SCF1WBWG10: Sparse Color Filter #1 White-Blue-White-Green 10-bit unpacked.
- SCF1WBWG10p: Sparse Color Filter #1 White-Blue-White-Green 10-bit packed.
- SCF1WBWG12: Sparse Color Filter #1 White-Blue-White-Green 12-bit unpacked.
- SCF1WBWG12p: Sparse Color Filter #1 White-Blue-White-Green 12-bit packed.
- SCF1WBWG14: Sparse Color Filter #1 White-Blue-White-Green 14-bit unpacked.
- SCF1WBWG16: Sparse Color Filter #1 White-Blue-White-Green 16-bit unpacked.
- SCF1WBWG8: Sparse Color Filter #1 White-Blue-White-Green 8-bit.
- SCF1WGWB10: Sparse Color Filter #1 White-Green-White-Blue 10-bit unpacked.
- SCF1WGWB10p: Sparse Color Filter #1 White-Green-White-Blue 10-bit packed.
- SCF1WGWB12: Sparse Color Filter #1 White-Green-White-Blue 12-bit unpacked.
- SCF1WGWB12p: Sparse Color Filter #1 White-Green-White-Blue 12-bit packed.
- SCF1WGWB14: Sparse Color Filter #1 White-Green-White-Blue 14-bit unpacked.

- SCF1WGWB16: Sparse Color Filter #1 White-Green-White-Blue 16-bit.
- SCF1WGWB8: Sparse Color Filter #1 White-Green-White-Blue 8-bit.
- SCF1WGWR10: Sparse Color Filter #1 White-Green-White-Red 10-bit unpacked.
- SCF1WGWR10p: Sparse Color Filter #1 White-Green-White-Red 10-bit packed.
- SCF1WGWR12: Sparse Color Filter #1 White-Green-White-Red 12-bit unpacked.
- SCF1WGWR12p: Sparse Color Filter #1 White-Green-White-Red 12-bit packed.
- SCF1WGWR14: Sparse Color Filter #1 White-Green-White-Red 14-bit unpacked.
- SCF1WGWR16: Sparse Color Filter #1 White-Green-White-Red 16-bit.
- SCF1WGWR8: Sparse Color Filter #1 White-Green-White-Red 8-bit.
- SCF1WRWG10: Sparse Color Filter #1 White-Red-White-Green 10-bit unpacked.
- SCF1WRWG10p: Sparse Color Filter #1 White-Red-White-Green 10-bit packed.
- SCF1WRWG12: Sparse Color Filter #1 White-Red-White-Green 12-bit unpacked.
- SCF1WRWG12p: Sparse Color Filter #1 White-Red-White-Green 12-bit packed.
- SCF1WRWG14: Sparse Color Filter #1 White-Red-White-Green 14-bit unpacked.
- SCF1WRWG16: Sparse Color Filter #1 White-Red-White-Green 16-bit.
- SCF1WRWG8: Sparse Color Filter #1 White-Red-White-Green 8-bit.
- YCbCr10_CbYCr: YCbCr 4:4:4 10-bit unpacked.
- YCbCr10p_CbYCr: YCbCr 4:4:4 10-bit packed.
- YCbCr12_CbYCr: YCbCr 4:4:4 12-bit unpacked.
- YCbCr12p_CbYCr: YCbCr 4:4:4 12-bit packed.
- YCbCr2020_10_CbYCr: YCbCr 4:4:4 10-bit unpacked BT.2020.
- YCbCr2020_10p_CbYCr: YCbCr 4:4:4 10-bit packed BT.2020.
- YCbCr2020_12_CbYCr: YCbCr 4:4:4 12-bit unpacked BT.2020.
- YCbCr2020_12p_CbYCr: YCbCr 4:4:4 12-bit packed BT.2020.
- YCbCr2020_411_8_CbYYCrYY: YCbCr 4:1:1 8-bit BT.2020.
- YCbCr2020_422_10: YCbCr 4:2:2 10-bit unpacked BT.2020.
- YCbCr2020_422_10_CbYCrY: YCbCr 4:2:2 10-bit unpacked BT.2020.
- YCbCr2020_422_10p: YCbCr 4:2:2 10-bit packed BT.2020.
- YCbCr2020_422_10p_CbYCrY: YCbCr 4:2:2 10-bit packed BT.2020.
- YCbCr2020_422_12: YCbCr 4:2:2 12-bit unpacked BT.2020.
- YCbCr2020_422_12_CbYCrY: YCbCr 4:2:2 12-bit unpacked BT.2020.
- YCbCr2020_422_12p: YCbCr 4:2:2 12-bit packed BT.2020.
- YCbCr2020_422_12p_CbYCrY: YCbCr 4:2:2 12-bit packed BT.2020.
- YCbCr2020_422_8: YCbCr 4:2:2 8-bit BT.2020.
- YCbCr2020_422_8_CbYCrY: YCbCr 4:2:2 8-bit BT.2020.
- YCbCr2020_8_CbYCr: YCbCr 4:4:4 8-bit BT.2020.

- YCbCr411_8: YCbCr 4:1:1 8-bit.
- YCbCr411_8_CbYYCrYY: YCbCr 4:1:1 8-bit.
- YCbCr420_8_YY_CbCr_Semiplanar: YCbCr 4:2:0 8-bit YY/CbCr Semiplanar.
- YCbCr420_8_YY_CrCb_Semiplanar: YCbCr 4:2:0 8-bit YY/CrCb Semiplanar.
- YCbCr422_10: YCbCr 4:2:2 10-bit unpacked.
- YCbCr422_10_CbYCrY: YCbCr 4:2:2 10-bit unpacked.
- YCbCr422_10p: YCbCr 4:2:2 10-bit packed.
- YCbCr422_10p_CbYCrY: YCbCr 4:2:2 10-bit packed.
- YCbCr422_12: YCbCr 4:2:2 12-bit unpacked.
- YCbCr422_12_CbYCrY: YCbCr 4:2:2 12-bit unpacked.
- YCbCr422_12p: YCbCr 4:2:2 12-bit packed.
- YCbCr422_12p_CbYCrY: YCbCr 4:2:2 12-bit packed.
- YCbCr422_8: YCbCr 4:2:2 8-bit.
- YCbCr422_8_CbYCrY: YCbCr 4:2:2 8-bit.
- YCbCr422_8_YY_CbCr_Semiplanar: YCbCr 4:2:2 8-bit YY/CbCr Semiplanar.
- YCbCr422_8_YY_CrCb_Semiplanar: YCbCr 4:2:2 8-bit YY/CrCb Semiplanar.
- YCbCr601_10_CbYCr: YCbCr 4:4:4 10-bit unpacked BT.601.
- YCbCr601_10p_CbYCr: YCbCr 4:4:4 10-bit packed BT.601.
- YCbCr601_12_CbYCr: YCbCr 4:4:4 12-bit unpacked BT.601.
- YCbCr601_12p_CbYCr: YCbCr 4:4:4 12-bit packed BT.601.
- YCbCr601_411_8_CbYYCrYY: YCbCr 4:1:1 8-bit BT.601.
- YCbCr601_422_10: YCbCr 4:2:2 10-bit unpacked BT.601.
- YCbCr601_422_10_CbYCrY: YCbCr 4:2:2 10-bit unpacked BT.601.
- YCbCr601_422_10p: YCbCr 4:2:2 10-bit packed BT.601.
- YCbCr601_422_10p_CbYCrY: YCbCr 4:2:2 10-bit packed BT.601.
- YCbCr601_422_12: YCbCr 4:2:2 12-bit unpacked BT.601.
- YCbCr601_422_12_CbYCrY: YCbCr 4:2:2 12-bit unpacked BT.601.
- YCbCr601_422_12p: YCbCr 4:2:2 12-bit packed BT.601.
- YCbCr601_422_12p_CbYCrY: YCbCr 4:2:2 12-bit packed BT.601.
- YCbCr601_422_8: YCbCr 4:2:2 8-bit BT.601.
- YCbCr601_422_8_CbYCrY: YCbCr 4:2:2 8-bit BT.601.
- YCbCr601_8_CbYCr: YCbCr 4:4:4 8-bit BT.601.
- YCbCr709_10_CbYCr: YCbCr 4:4:4 10-bit unpacked BT.709.
- YCbCr709_10p_CbYCr: YCbCr 4:4:4 10-bit packed BT.709.
- YCbCr709_12_CbYCr: YCbCr 4:4:4 12-bit unpacked BT.709.
- YCbCr709_12p_CbYCr: YCbCr 4:4:4 12-bit packed BT.709.

- YCbCr709_411_8_CbYYCrYY: YCbCr 4:1:1 8-bit BT.709.
- YCbCr709_422_10: YCbCr 4:2:2 10-bit unpacked BT.709.
- YCbCr709_422_10_CbYCrY: YCbCr 4:2:2 10-bit unpacked BT.709.
- YCbCr709_422_10p: YCbCr 4:2:2 10-bit packed BT.709.
- YCbCr709_422_10p_CbYCrY: YCbCr 4:2:2 10-bit packed BT.709.
- YCbCr709_422_12: YCbCr 4:2:2 12-bit unpacked BT.709.
- YCbCr709_422_12_CbYCrY: YCbCr 4:2:2 12-bit unpacked BT.709.
- YCbCr709_422_12p: YCbCr 4:2:2 12-bit packed BT.709.
- YCbCr709_422_12p_CbYCrY: YCbCr 4:2:2 12-bit packed BT.709.
- YCbCr709_422_8: YCbCr 4:2:2 8-bit BT.709.
- YCbCr709_422_8_CbYCrY: YCbCr 4:2:2 8-bit BT.709.
- YCbCr709_8_CbYCr: YCbCr 4:4:4 8-bit BT.709.
- YCbCr8: YCbCr 4:4:4 8-bit.
- YCbCr8_CbYCr: YCbCr 4:4:4 8-bit.
- YUV411_8_UYYVYY: YUV 4:1:1 8-bit.
- YUV422_8: YUV 4:2:2 8-bit.
- YUV422_8_UYVY: YUV 4:2:2 8-bit.
- YUV422Packed: YUV422Packed.
- YUV8_UYV: YUV 4:4:4 8-bit.

BufferHeight

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → BufferHandlingControl	Integer	RW

Value Info

Unit: lines

Short Description

Height of the image in line-scan mode. This feature is only used in line-scan acquisition scenarios to compute PayloadSize

DeliverIncompleteImages

Feature Info

Module	Category Path	Type	Access
Data Stream	Root → BufferHandlingControl	Boolean	RW

Short Description

Deliver Incomplete Images.

4.6. GigEVision Category

GevPacketResend	171
SetPacketSizeToMaximum	172
FilterDriverEnable	173

GevPacketResend

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → GigEVision	Boolean	Imposed: RO

Short Description

Gev Packet Resend.

SetPacketSizeToMaximum

Feature Info

Module	Category Path	Туре	Access
Data Stream	$Root \to GigEVision$	Command	Imposed: WO

Short Description

Send test packets to figure out maximum packet size for this stream and save the highest working size into GevSCPSPacketSize.

WARNING

This feature can only be activated or de-actived when the data-stream is inactive

FilterDriverEnable

Feature Info

Module	Category Path	Туре	Access
Data Stream	$Root \rightarrow GigEVision$	Boolean	RW

Short Description

Toggle reception of data through filter driver.

4.7. StreamControl Category

StreamReset	175
ActivateCic	176
DeactivateCic	177

StreamReset

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → StreamControl	Command	Imposed: WO

Short Description

Stream Reset.

WARNING

This feature can only be activated or de-actived when the data-stream is inactive.

ActivateCic

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → StreamControl	Command	Imposed: WO

Short Description

Activate the Camera and Illumination Controller if the data stream was started with ACQ_START_FLAGS_CUSTOM_DO_NOT_ACTIVATE_SEQUENCER.

DeactivateCic

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → StreamControl	Command	Imposed: WO

Short Description

Deactivate the Camera and Illumination Controller.

4.8. EventControl Category

EventSelector	179
EventNotification	180
EventNotificationContext1	181
EventNotificationContext2	182
EventNotificationContext3	183
EventCount	184
EventCountReset	185

EventSelector

Feature Info

Module	Category Path	Type	Access
Data Stream	$Root \to EventControl$	Enumeration	RW

Short Description

Select an event.

Selected Features

- "EventNotification" on page 180
- "EventNotificationContext1" on page 181
- "EventNotificationContext2" on page 182
- "EventNotificationContext3" on page 183
- "EventCount" on page 184
- "EventCountReset" on page 185

Enumeration Values

- LostFrames: Frames never received. Cause unknown.
- CancelledFrames: Frames never sent by the camera.
- IncompleteFrame: Frames delivered while there are still missing packets.
- Failure: Fatal error that terminated acquisition.

EventNotification

Feature Info

Module	Category Path	Туре	Access
Data Stream	$Root \rightarrow EventControl$	Boolean	RW

Short Description

Activate or deactivate the notification to the host application of the occurrence of the selected event.

EventNotificationContext1

Feature Info

Module	Category Path	Type	Access
Data Stream	$Root \to EventControl$	Enumeration	RW

Short Description

Select context information reported in EVENT_DATA_CUSTOM_CONTEXT_1.

Enumeration Values

- Nothing: No information.
- EventSpecific: Event-specific context information.
- BlockIDlo: GVSP Block identifier (lower half).
- BlockIDhi: GVSP Block identifier (higher half).

EventNotificationContext2

Feature Info

Module	Category Path	Type	Access
Data Stream	$Root \rightarrow EventControl$	Enumeration	RW

Short Description

Select context information reported in EVENT_DATA_CUSTOM_CONTEXT_2.

Enumeration Values

- Nothing: No information.
- EventSpecific: Event-specific context information.
- BlockIDlo: GVSP Block identifier (lower half).
- BlockIDhi: GVSP Block identifier (higher half).

EventNotificationContext3

Feature Info

Module	Category Path	Type	Access
Data Stream	$Root \rightarrow EventControl$	Enumeration	RW

Short Description

Select context information reported in EVENT_DATA_CUSTOM_CONTEXT_3.

Enumeration Values

- Nothing: No information.
- EventSpecific: Event-specific context information.
- BlockIDlo: GVSP Block identifier (lower half).
- BlockIDhi: GVSP Block identifier (higher half).

EventCount

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → EventControl	IntReg	RO

Register Port: StreamPort

Short Description

Number of occurrences of the selected event (32-bit counter).

EventCountReset

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → EventControl	Command	Imposed: WO

Short Description

Reset the selected EventCount.

4.9. StreamStatistics Category

StatisticsSamplingSelector	187
StatisticsFrameRate	188
StatisticsLineRate	189
StatisticsDataRate	190
StatisticsStartSampling	191
StatisticsStopSampling	192

StatisticsSamplingSelector

Feature Info

Module	Category Path	Type	Access
Data Stream	$Root \to StreamStatistics$	Enumeration	RW

Description

Selects the stream statistics sampling method.

Default value: LastSecond.

Selected Features

"StatisticsFrameRate" on page 188

• "StatisticsLineRate" on page 189

"StatisticsDataRate" on page 190

Enumeration Values

LastSecond: During the last second.

LastTenSeconds: During the last 10 seconds.

• Last2Buffers: For the last 2 buffers.

Last10Buffers: For the last 10 buffers.

Last100Buffers: For the last 100 buffers.

Last1000Buffers: For the last 1000 buffers.

- LastAcquisition: During the last acquisition activity period. Namely since the last DSStartAcquisition() function call until now, if the acquisition is still active otherwise until the last DSStopAcquisition() function call.
- Custom: Custom sampling using StatisticsStartSampling and StatisticsStopSampling commands.

StatisticsFrameRate

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → StreamStatistics	FloatReg	RO

Register Port: StreamPort

Value Info

Unit: Fps (Frames per second)

Description

Average frame delivery rate using the selected sampling method.

NOTE

This feature is only available for area-scan firmware variants.

NOTE

The statistics measures the frame rate at the level of the PCI Express interface, NOT at the level of the CoaXPress interface!

StatisticsLineRate

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → StreamStatistics	FloatReg	RO

Register Port: StreamPort

Value Info

Unit: Lps (Lines per second)

Description

Average line delivery rate using the selected sampling method.

NOTE

This feature is only available for line-scan firmware variants.

NOTE

The statistics measures the line rate at the level of the PCI Express interface, NOT at the level of the CoaXPress interface!

StatisticsDataRate

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → StreamStatistics	FloatReg	RO

Register Port: StreamPort

Value Info

Unit: MBps (Megabytes per second)

Short Description

Get the average PCI data delivery rate using the selected sampling method.

StatisticsStartSampling

Feature Info

Module	Category Path	Туре	Access
Data Stream	Root → StreamStatistics	Command	Imposed: WO

Short Description

Start sampling the stream data. Applies only when StatisticsSamplingSelector = Custom.

StatisticsStopSampling

Feature Info

Module	Category Path	Туре	Access
Data Stream	$Root \to StreamStatistics$	Command	Imposed: WO

Short Description

Stop sampling the stream data. Applies only when StatisticsSamplingSelector = Custom.